228 research outputs found
Diffractive dissociation as shadow scattering
It is pointed out that if the mechanism of diffractive production of particles is the same as that of elastic scattering, the diffractive dissociation can be calculated as shadow of non-diffractive processes. A general method of calculation is proposed. It uses the technique of the overlap matrix. A specific calculation in Uncorrelated Jet Model is performed. In this calculation the diffractive processes arise as a direct consequence of correlations induced in non-diffractive interactions by energy and momentum conservation. The most important prediction of the model is that the inclusive mass distribution of diffractive dissociation splits into non-scaling part describing the low-mass excitations and the approximately scaling part describing the high-mass excitations. The non-scaling part of the mass spectrum is dominated by single particle production and at large masses behaves as . The shape of the scaling part of the spectrum in the triple-Regge region is where . The properties of exclusive diffractive channels are also discussed
Rising plateu from longitudinal phase-space
Longitudinal phase-space is used to study the energy dependence of the plateau in the rapidity distribution of particles produced in p–p collisions at laboratory momenta above 100 GeV. The density of particles emitted at 90 in cms shows a fast rise until 10 000 GeV and then approaches the asymptotic limit very slowly. This rise accounts for a large fraction of the experimentally observed increase
Two-body resonance approximation of a three-particle decay
An expansion of the Veneziano amplitude for a three-particle decay into two body resonances is studied. It is shown that summing resonances from various channels does not contradict the duality and that the series converges reasonably fast[…
The longitudinal phase-space integral with leading particles
De Groot’s method of calculating the longitudinal phase-space integrals is generalized to include leading particles. The generalization simplifies practical calculations of all quantities predicted by the uncorrelated jet model with leading particles
Helicity Analysis of Semileptonic Hyperon Decays Including Lepton Mass Effects
Using the helicity method we derive complete formulas for the joint angular
decay distributions occurring in semileptonic hyperon decays including lepton
mass and polarization effects. Compared to the traditional covariant
calculation the helicity method allows one to organize the calculation of the
angular decay distributions in a very compact and efficient way. In the
helicity method the angular analysis is of cascade type, i.e. each decay in the
decay chain is analyzed in the respective rest system of that particle. Such an
approach is ideally suited as input for a Monte Carlo event generation program.
As a specific example we take the decay () followed by the nonleptonic decay for which we show a few examples of decay distributions which are
generated from a Monte Carlo program based on the formulas presented in this
paper. All the results of this paper are also applicable to the semileptonic
and nonleptonic decays of ground state charm and bottom baryons, and to the
decays of the top quark.Comment: Published version. 40 pages, 11 figures included in the text. Typos
corrected, comments added, references added and update
Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
Limits on the effective quark radius from inclusive scattering at HERA
The high-precision HERA data allows searches up to TeV scales for Beyond the
Standard Model contributions to electron-quark scattering. Combined
measurements of the inclusive deep inelastic cross sections in neutral and
charged current scattering corresponding to a luminosity of around 1
fb have been used in this analysis. A new approach to the beyond the
Standard Model analysis of the inclusive data is presented; simultaneous
fits of parton distribution functions together with contributions of "new
physics" processes were performed. Results are presented considering a finite
radius of quarks within the quark form-factor model. The resulting 95% C.L.
upper limit on the effective quark radius is cm.Comment: 10 pages, 4 figures, accepted by Phys. Lett.
Measurement of the cross-section ratio sigma_{psi(2S)}/sigma_{J/psi(1S)} in deep inelastic exclusive ep scattering at HERA
The exclusive deep inelastic electroproduction of and
at an centre-of-mass energy of 317 GeV has been studied with the ZEUS
detector at HERA in the kinematic range GeV,
GeV and GeV, where is the photon virtuality, is the
photon-proton centre-of-mass energy and is the squared four-momentum
transfer at the proton vertex. The data for GeV were taken in
the HERA I running period and correspond to an integrated luminosity of 114
pb. The data for GeV are from both HERA I and HERA II
periods and correspond to an integrated luminosity of 468 pb. The decay
modes analysed were and for the
and for the . The cross-section ratio
has been measured as a function of
and . The results are compared to predictions of QCD-inspired
models of exclusive vector-meson production.Comment: 24 pages, 8 figure
High-E_T dijet photoproduction at HERA
The cross section for high-E_T dijet production in photoproduction has been
measured with the ZEUS detector at HERA using an integrated luminosity of 81.8
pb-1. The events were required to have a virtuality of the incoming photon,
Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the
range 142 < W < 293 GeV. Events were selected if at least two jets satisfied
the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV
and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of
the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to
the parton distributions in the photon and proton and effects beyond
next-to-leading order in QCD. Hence these data can be used to constrain further
the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from
referees. Accepted by Phys. Rev.
- …