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De Groot,s method of calculating the longitudinal phase-space integrals is generalized 
to include leading particles. The generalization simplifies practical calculations of all quantities 
predicted by the uncorrelated jet model with leading particles.

It is well known that many features of the multiple production of particles at high energies can be exρlained by energy and momentum conservation and the transverse momentum cut-off. This is the main reason of the interest in the uncorrelated jet model[1] which is the simplest model incorporating these assumptions.For practical calculations in this model, one is interested in the phase-space integral (called also the grand partition function), because all physical quantities predicted by the model can be derived from it. An elegant asymptotic expansion of this integral for large energies has been obtained by de Groot [2], following the ideas suggested by Luręat and Mazur [3] and Bassetto et al. [4].When studying high energy collisions, one gets a morę realistic model by accounting for the leading particie effect (as an additional input, besides energy-momentum conser- vation and the transverse momentum cut-off). In this notę we derive a high-energy expansion of the longitudinal phase-space integral with leading particles by an extension of de Groot,s method. Our exρansion proved useful in an actual calculation of the rising plateau [5].
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where kR l = (Er l, fcR> l) are four-momenta of the leading particles, qi - (Ei, qi) are four-momenta of the emitted particles, R is the total four-momentum of the whole system, and
Ei = E±kn. (2)The subscripts 1 and 11 denote the perpendicular and parallel components of the momenta with respect to the beam direction.The leading particie effect is described here by the factors ER <pR(kRx) and EL<pL(kLj). With the factors ER and E£, the input density for the leading particles in Eq. (1) is essentially fiat in longitudinal niomentum. This corresponds to the physics in the bremsstrahlung model [6] where the emission of the field quanta is not influenced by the energy loss of the leading particie except for the overall energy and momentum conservation.De Groot proposed a way of calculating integrals as in Eq. (1), but without leading particles [2], He used the method of stationary phase to calculate the Laplace transform of the phase-space integral [3]. In order to get the observed spectra, however, one has to integrate de Groot,s result over the leading particie variables [7], The additional multi- dimensional integration is a non-trivial problem. It is therefore of interest to develop an approach in which the leading particles are treated on equal footing with the produced ones. This is the purpose of the present notę.The Laplace transform of Φλ(R) is denoted by Φλ(x),

⅛) = [e~xxΦλ(R)d*R (3)and can be inverted by using the formula
(4)

(5)

For Φλ(x) one obtains the form

where the summation over n has been explicitly performed.

We discuss here the high-energy expansion of the integral

(1)
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We observe now that the longitudinal integrals can be expressed by modified Bessel functions [8],

(6)and
(7)

Our notation is μ2i = μ2 + q2h, m2^ = m2 + k2γ, ar.d
χ — Xθ±X[b 

x2 = Xq — x^ = x+x-. (8)(9)Substituting Eqs (6) and (7) into Eqs (4) and (5) we obtain after rotating the integration contour by 90° 
with
and

Φa(K) = e~f*J-  bZλ(b,R) (10)
(U)

Φλ(6,x) = ∫ d2kR±<p(kRA)mR:LK1(mR_Lx)eikxl b∫ <72fcLX?<4±)"iL_LK1(niLj.x)eiłŁ-1'b exp (2Λ ∫ d2q^f(qJK0(μχx)eii'b). (12)The next step is to perform the integration over x+ and x~ in Eq. (11). This can be done by expanding the Bessel functions appearing in Eq. (12) around the point x = 0. As shown by de Groot [2], the main contribution to Φλ(R) at high energies comes from the neighbourhood of this point. The expansion is easily achieved by inserting the known series expansions of Ko and K1,

(13)and Z Zc ’
zK1(z) = 14-----ln---------- 1- ...2 2 (14)

where γ is Euler,s constant. In the present notę we restrict ourselves to only the first two terms in these expansions. The resulting formula for Φλ(b, x) can be integrated term by
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term thus providing the required asymρtotic expansion of the longitudinal phase-space integral (1). We obtain

(15)
(16a)
(16b)
(16c)
(lód)
(16e)

(17)
(18)

(19)
(20)
(21)

and
For the evaluation of Zλ(6, R) we use the formulae [8]

where Γ(α) and y>(μ) are Euler,s gamma and digamma functions. The result is

with
and

where we have introduced the notation
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To obtain the value of Φλ(R) it is now enough to substitute the formula (19) into Eq. (10) and perform the required Fourier-Bessel transform. The result will obviously depend on the specific choice of the cut-off functions ∕(<jx), (PrÓcrj), and yL(^Lj_)- Because of azimuthal symmetry, the expression (10) finally reduces to a one-dimen- sional integral,

oo

Φλ(K) = Φ(R1, R) =

0

bdbJ0(R1b)Zλ(b, R). (22)
From Eq. (19) we see that the leading term does not depend on the masses of the leading particles.
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