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It is pointed out that if the mechanism of diffractive production of particles is the same 
as that of elastic scattering, the difiractive dissociation can be calculated as shadow of non- 
-diffractive processes. A generał method of calculation is proposed. It uses the technique of 
the overlap matrix. A specific calculation in Uncorrelated Jet Model is performed. In this 
calculation the diffractive processes arise as a direct conseąuence of correlations induced in 
non-diffractive interactions by energy and momentum conservation. The most important 
prediction of the model is that the inclusive mass distribution of diffractive dissociation 
splits into non-scaling part describing the low-mass excitations and the approximately scaling 
part describing the high-mass excitations. The non-scaling part of the mass spectrum is 
dominated by single particie production and at large masses behaves as d<s[dAH2 ~uf~6. The 
shape of the scaling part of the spectrum in the triple-Regge region is dσ∣dζ = (f log ζ)~t 
where ζ — JK2js. The properties of exclusive diffractive channels are also discussed.

1. IntroductionOne of the well-known features of strong interactions at high energies is a divisioπ of most of the channels into two classes:(a) those with cross-sections dropping rapidly with increasing energy (non-diffractive channels);(b) those with cross-sections varying slowly with energy (diffractive channels).The best-known representative of class (b) is the elastic diffractive scattering. The existence of the diffractive inelastic channels was conjectured by Feinberg and Pomeranchuk (1956) and by Good and Walker (1960) and then identified experimentally (see e.g. a recent review by Lubatti (1972)).There exists at present no fully satisfactory description of the diffractive production. However, all models agree with the basie idea of Good and Walker (1960) that the
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660mechanism of diffracdve dissociation is the same as that of elastic scattering, i.e. the absorption of incident and outgoing hadron waves1.

1 This is sometimes expressed by saying that both elastic scattering and diflractive dissociation are 
dominated by the exchange of the Pomeranchuk singularity.

In this paper we follow this point of view, and we investigate one of its straightforward conseąuences: that diffractive scattering and production is determinedby the non-diffractive production of particles, which is the source of absorption. In other words, diffractive and non-diffractive production cannot be treated independently in consistent models of strong interactions at high energies.This generał idea was already widely explored in investigation of elastic scattering and proved to be a useful tool in the analysis of the properties of both elastic scattering and particie production (see e.g. Van Hove 1964, Michejda 1967, 1968).The purpose of the present paper is to investigate this relation also for inelastic diffrac- tive channels, with the hope that it may provide some interesting constraints on models for both diffractive and non-diffractive interactions. The main conclusion from our qualita- tive analysis is that such a program is indeed feasible and that many important properties of diffractive dissociation can be determined from the known or assumed properties of non- -diffractive particie production.Our basie tool is the unitarity condition which connects all channels at a given energy. We obtain the relation between the diffractive and non-diffractive channels from unitarity, using the method of overlap matrix developed by Białas and Van Hove (1965) and by Białas and Zalewski (1966). This is described in Section 2. We investigate further the obtained relationship by assuming the Uncorrelated Jet Model for non-diffractive particie production. The generał formulation is described in Section 3 and some specific realization of the model in Sections 4 and 5. In Sections 6 and 7 we discuss briefly the generał properties of diffractive production in our model. Finally, in Section 8 we summarize our conclusions.
2. Diffractive dissociation and non-diffractive channelsIn this Section we would like to discuss to what extent diffractive dissociation can be estimated if the non-diffractive part of the interaction is known.To begin with, we have to define what we mean by these two classes of interactions. It seems that the most striking feature which would help in identification of diffractive and non-diffractive parts of the scattering matrix is their energy dependence. Thus we propose to identify an “excłusive” process as diffractive if the energy dependence of its cross-section is similar to that of elastic scattering. Other processes, for which the cross- -section drops with inereasing energy according to a power law or faster are called non- -diffractive. It is not elear whether there is in naturę a elear separation between these two classes of processes and indeed the study of the “border linę” between them is interesting. Nevertheless we feel that such a distinction makes sense, at least in the first approxi- mation.Thus our problem may be stated as follows: suppose we have a correct description 
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of all channels with cross-sections that fali rapidly when the energy increases. Can we estimate the scattering amplitudes for other channels?A similar problem was treated in a different context by Białas and Van Hove (1965) and by Białas and Zalewski (1966) and we follow their treatment here. Thus we assume that the production of particles at high energies is dominated by “non-diffractive” processes which have two basie characteristics:(/) all exclusive processes tend to zero at high energies according to power law or faster. The inclusive single particie spectra show scaling behaviour;

(ii) the total non-diffractive cross-section, i.e. the sum of all exclusive cross-sections is a slowly varying function of the energy.It is elear that such a non-diffractive interaction implies the absorption of the incident hadron waves. Our problem is to find how this absorption is reflected in the scattering amplitudę, that is to say, what shadow effects are implied by it. We expect that shadow scattering contributes mainly to the elastic channel and a few other channels of Iow multi- plicity. Thus, at reasonably high energies, most of the channels (high multiplicity channels) are practically not influenced by shadow corrections and, consequently, they are correctly described by the non-diffractive interaction. In the infinite momentum limit such a behav- iour leads to complete separation of diffractive and non-diffractive channels. This property of diffractive dissociation (which should of course be checked a posteriori for consistency) allows us to find the shadow elastic and inelastic scattering by the method of Białas and Van Hove (1965). We repeat its basie ideas here.Let us denote the Γ-matrix describing the non-diffractive interaction by TN and the fuli T-matrix by T. Furthermore, let us denote the states which are not influenced by shadow scattering by ∣ΛΓ> and the states to which shadow scattering contributes, by ∣Z>>. Thus we have <N∣⅞∣Z)> = <A∣T∣D>,
<D'∖Tn∖D> ≠ <D'∣T∣D>. (2.1)(2.2)Our problem is to calculate the energy-independent part of <Z>'∣T∣Z>> if <Λ∏7,jv∣Z>> and <Z>'∣7∖∣Z)> are known. This can be done by using the unitarity condition. From the matrix element of the unitarity condition (2-3)between the two states <Z>'∣ and |Z>> we obtainj(<∕)'∣Tt∣Z>>-<Z>'∣T∣D>) == ∑<D'jTt∣D"> <D"jT∣D>+ ∑<D'∣TW <N∣Γ∣D>. 

n>' n

<J>'∖s∖d> ≡ <z)'∣p>+i<z>'1r∣p>and
<D'∖F∖D> ≡∑(D'∖T*∖N> <N∖T∖D> = ∑ζD'∖T^∖N) <N∣⅞∣D> 

N N

(2.4)
(2-5)
(2.6)

With the abbreviations
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Eq. (2.4) can be written in the form Sr⅛ = 1 —F (2.7)in the subsρace of ∣Z>> states.The matrix <D'∣F∣P> is called the overlap matrix, It summarizes the effect of the non- -diffractive channels on the diffractive channels. The generał solution of Eq. (2.7) is (Białas and Zalewski 1966) S = Ω(1-F)1'2, (2.8)

2 The assumption (2.9) is analogous to neglecting the real part of the elastic amplitudę in calculation 
of elastic scattering.

where Ω is an arbitrary unitary matrix, The Ω matrix describes the transitions D → D' if there is no coupling to non-diffractive channels. Since we would like to study only this part of the transition D → D' which is induced by the presence of non-diffractive channels, we take2 Ω = 1 (2.9)and, consequently <D'∣T∣Ω> → i<D'∣(l-√l→)∣D>. (2.10)
f→QOThis formula represents the solution of our problem. Indeed, it gives exρlicitly the high- -energy limit of the transition matrix elements ζD'∖T∖D') in terms of the non-diffractive matrix elements <2V∣7∖∣Ω>. One obvious and important consequence of formula (2.10) is that diffractive and non-diffractive interactions cannot be treated entirely independently in a consistent model of strong interactions.We see two drawbacks in this approach. Firstly it does not guarantee the unitarity of the whole S-matrix. Secondly, it assumes that the diffractive and non-diffractive channels can be separated, i.e. that there is no strong interference between them.Finally, let us notę that there exists also another possibility of calculating of the diffractive production from unitarity condition, the so-called unitarization procedurę (Auerbach et al. 1972, Aviv et al. 1972, Baker and Blankenbecler 1972, Fulco and Sugar 1973, Neff 1973, Skard and Fulco 1973, Sugar 1973). In unitarization procedures both diffractive and non-diffractive amplitudes are calculated from the known Born terms. In contrast, in the overlap matrix approach presented here the diffractive production is calculated from the known non-diffractive interactions.

3. Uncorrelated Jet ModelThe method of estimating the diffractive production presented in Section 2 is illustrated here using the Uncorrelated Jet Model for non-diffractive production. There are several reasons for this choice of the model. Firstly, it is interesting to understand how the cor- relations between particles produced non-diffractively influence the diffractive channels. 
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For this the predictions of the Uncorrelated Jet Model are useful. Secondly, as was already shown by de Groot and Ruijgrok (1971) and by Sivers and Thomas (1972), the Uncorrelated Jet Model provides a reasonable description of the inclusive properties of non-diffractive particie production and, consequently, can perhaps be treated as a good first approxima- tion to high-multiplicity events. Thirdly, the Uncorrelated Jet Model is the simplest model without short-range order. In models without short-range order the Pomeranchuk singularity is a cut rather than a pole (see e.g. Sivers 1972 for a discussion of this point). Thus the UJM is convenient for studying the properties of the Pomeranchuk cut. Finally, the calculations in the Uncorrelated Jet Model are relatively simple.A fairly generał discussion of the Uncorrelated Jet Model, applied to the high-energy proton-proton data was given recently by de Groot and Ruijgrok (1971) and by de Groot (1971). We follow rather closely their treatment, apart from some technical details. Thus we assume that our non-diffractive transition matrix Tfl is given in the standard form of the Uncorrelated Jet Model:

Tn = δw(P-P)TnSπ, (3.1)where P is the total four momentum and P is the operator of the total four-momentum of the system of particles. Further
'd3kt d3k∏ d3kr d3kn . *

3 We limit ourselves to nucleon-nucleon interactions. The nucleon ąuantum numbers are neglected. 
Consequently we adopt the commutation relation [Z>(A), b^(k,)] = Eδ^3'> (k-k,).

T„ = —-------------------—- y>0(kA, kB, kc, kD)b\kc)b\kD)b(k^b(kB) (3.2)Jis the operator responsible for the interaction between the nucleons. Here i(⅛) and b+(k) are annihilation and creation operators of the nucleons with momentum k, y0(kA, kB, kc, kD) is the corresponding transition amplitudę 3. The operator Sπ describes the uncorrelated emission and absorption of mesons,
Sπ = exp (i j ρ*(q)a(q) ~ + i j ρ(q)at(q) = 

= e~v/2 exp (i J ρ(q)at(q) exp (i J Q*(q)a(q) ,

∫
1⅜

le(β)l2 ~ (3.3)Here ai(q) and a(q) are creation and annihilation operators of mesons with momentum q. They satisfy the commutation relations[β(s),α⅝')] = Eδi3∖q-qr). (3.4)Further, ρ(q) and ρ*(q) are the probability amplitudes for creation and for annihilation. They may depend in generał on nucleon momenta
θ(<l) = kA, kB, kc, ko). (3.5)
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Thus, in this model the meson wave functions depend on the nucleon momenta. However, the nucleon-nucleon transition amplitudę depends neither on the momenta nor on the number of emitted mesons. The numerical factor exp (— V∣2) can be absorbed into these transition amplitudes: Ψo → Ψ = y>oe~vi2- (3.6)The overlap matrix elements can be written in the form

ζq1, ..., qN, kc, kD\F\kA, kBy =

= 2ó,A)(kA + kB-ql- ... — qN — kc — kD) (q1, ..., qN, k& kD\A\kA, kβ>, (3.7)where the matrix elements (q1, ..., qN, kc, kD\A\kA, kBy, to the second order in F, represent the amplitudes for diffractive scattering (see Eq. 2.10)In Apρendix B it is shown that<4ι> •••> Q,ni k∙c> kD\A\kA, kBy —

i" £ (—1)" X ρs(qh) ... ρf(q∣n)ρι(q∣n+t) ∙∙∙ ρi(qw)× 
n ~ θ (^ )combinations 

with xΦhi‰+⅛-⅛1ih- ... -qhl) (3.8)
Φ1→f(K) — Φ(R', kA, kB, kc, kD) —1 p3fc1 <i3k22 J kBi k§2 ψ*(kc, kD, k1, k2yip(kA, kB, kl, k2)×

(3.9)
In this formula we distinguish between ρi(βj∙) = ρ{Qj', kA, kB, k1, k2) and ρt(Qj) = 
— q(Q> kc, kD, ki, k2) which may be different in generał case.A special case of formula (3.8) is the elastic overlaρ function (Van Hove 1964)

(kę, kD\A\kA, kBy — $(kA-i-kB", kA, kB, kc, ko). (3.10)From this formula we see the physical meaning of the function Φi~,∣(R) entering the generał expression (3.8) for the overlaρ matrix: Φ is an elastic overlap fupction corresponding to the imaginary part of the generalized elastic amplitudę describing the transition 
(fcA, kB) → (kc, kD) at the total energy-momentum equal to R. It is important to realize that these generalized elastic amplitudes describe non-physical elastic scattering: indeed, the total energy-momentum vector R need not be equal to kA + kB and/or kc + ko. Conse-
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ąuently, these amplitudes cannot be determined directly from experimental data and must be estimated from model calculations based on the formula (3.9).The generał structure of the basie formula (3.8) can be conveniently represented by the diagrams in Figurę 1 for the production of 0, 1 and 2 particles.It is seen that the elastic amplitudę is given by the elastic overlap function. Next, the single pion production amplitudę is the difference of two terms. The first term may be interpreted as the creation of the meson followed by off-shell absorptive elastic scattering

Fig. 1. Graphical representation of the structure of the diffractive shadow amplitudesof nucleons. The second term represents the off-shell absorptive elastic scattering of nucleons followed by the creation of the meson. This structure is identical with that suggested by Good and Walker (1960). Then the two meson diffractive production amplitudę is given by four terms corresponding to absorptive nucleon scattering and meson creation in four possible orderings. This simple structure is rather suggestive and may be morę generał than the model used for its derivation.To summarize, we have shown that the diffractive production of particles in the Uncor- related Jet Model is fully determined bya) the probability amplitudes for creation of mesons andb) the generalized elastic amplitudes for scattering of two nucleons.We think that this result is appealing and can perhaps serve as a starting point in phenomenological applications.One important point is still to be noticed. The contribution of the diffractive amplitudę (3.8) to the inelastic scattering N ≠ 0 vanishes if the generalized elastic amplitudes 
Φ(R', kA, kB, kc, kD) do not depend on R and ifρf(fl) = ρi(β) ≡ g(β)- (3.11)
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Indeed, in such a case we can write<5ι, ∙∙∙, 5w, kc, kD\F\kA, kBy =

= irie(<lι), ∙∙∙, ρ(5j∕)Φ‰, kB, kc, kD) V∖-l)" . (3.12)
n=0However, for N ≠ 0 J(-»"Q = 0. (3.13)

n = 0Thus, we see that in Uncorrelated Jet Model without energy-momentum conservation there is no diffractive production if ρ(β) does not depend on nucleon momenta. In fact, after removing the <5-function from Eq. (3.9), function Φi→t(Ji) does not depend on .Rand, as shown above, all shadow contributions vanish for N ≠ 0. The inelastic shadow (z.e. diffractive) scattering is then generated by long-range correlations between nucleons and pions caused by energy and momentum conservation.The diffractive production may be generated even without energy and momentum conservation if the meson functions ρ depend on nucleon variables k. Indeed, neglecting the energy momentum conservation, we obtain from Eqs (3.8) and (3.9) the following formula for diffractive amplitudę4<5i, •••> 5ιv, kc, kD\A\kA, kgy = iN<P(kD + kB) (gi(5∏)-5f(5n))∙ (3-14)
n = 0In the following Sections we discuss a few examples of possible behaviour of the meson wave functions and generalized elastic amplitudes, as well as their consequences for the diffractive production of particles.For convenience we collect here some formulae for the cross-sections, in terms of the amplitudes used in this paper.The total inelastic cross-section:8π2σtot = T77-^ ‰ ke\A\kA, kBy (3.15)Mklab

(M is the nucleon mass).Diffractive production of N pions (N = 0, 1, ...):4π2 1 ...dσ = ——- — -5' >(kA + kB-kc-kD-q1- ... -qN)x 
Mkiab N!

. d3kc d3kn d3q, d3qrf
×Kkc, ko, qi, ..., qN\A\kA, kay∖2... . (3.16)

Ec Ed Ei En

We are indebted to Prof. Th. Ruijgrok for pointing out this formula to us.
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Non-diffractive production of N pions:4π2 1

dσ = —— —— ó(4)(fcA + fcB—kc-kD — βj- ... — ‰)× Λlfclab N! 
×ι<e1, • ••> Qn, kc, fcD∣τ∣fcyl, kBy\

d3kc d3ko d3Ql 
Eę E∩ Ej

(3.17)
Formula (3.16) contains, as a special case, the cross-section for elastic scattering. Matrix elements of the operators A and τ are given by formula (3.8) and by<βι, •■•> Qn, kc, kD\T\kA, kBy = v‰ kB, kc, k^i"ρi(Q1) ... ρj(‰)1 (3.18)

4. Non-diffractiυe processesUp to now, our discussion was fairly generał and did not depend on special properties of the meson and nucleon wave functions. To proceed further, we have to specify them a little better. Fortunately, some of these properties are determined by the known experi- mentał features of the inclusive distributions. To guarantee the scaling behaviour of the single particie spectra, the meson wave function ρ will be taken as the function of trans- verse momentum and of the Feynman scaled longitudinal momentum5eta; kA, ke, kj, k2) = ρtax, x), (4.1)where x∕s is the total CMS energy available in the collisions = (kA + kB)2 (4.2)and (4.3)
The transverse direction is measured in the centre of mass frame of the (kA+kB) system with respect to the direction of vector kA. It follows from Eq. (4.1) that

-⅛)∣2 =21θg-,£ s0where
λ = Ptaileta ,χ = °)l2

(4.4)
(4.5)

5 This is not the most generał form of ρ which assures scaling. We ignore the possible dependence on 
the nucleon variables (except for the direction of the incident nucleons) in order to simplify the discussion. 
No essential feature of the model is lost by this simplification.

V ≡
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(4.6)
(4.7)
(4.8)
(4.9)

and s0 is a constant depending on the detailed shape of ρ⅛). From Eqs (3.6) and (4.4) we see that the nucleon-nucleon scattering amplitudę has the form∕sλ→z2V,(7cΛ> ^B> ^cC> ^d) ~ I s j ⅛B> ^1> k2}-We assume that the function γ0 factorizesψo‰ kB; k1, k2) = 'JeλEbE1E2 ξ(wA, wl)ξ(wo, w2).Here wa, wb, wi, w2 denote the four-vectorsw = (fc±, x, ε) and
χ = fc∣∣ ε = A

y∕s \sThe form (4.7) is suggested by the requirement that the total cross-section is a slowly varying function of the incident momentum6.

6 The discussion of this point is given by de Groot and Ruijgrok (1971). These authors include also 
a logarithmic factor in the nucleon-nucleon amplitudę, in order to obtain the constant total cross-section. 
We neglect this factor sińce it does not make any qualitative difference.

7 It is interesting to notę that our model is a specific example of the models of the high-energy inter- 
actions discussed recently by Harari (1972). Indeed, for A → 0 we have <x → 1 i.e. vector exchange between 
two interacting nucleons. As A (which plays the role of the πN coupling constant) increases, the exchanged 
trajectory decreases. The Pomeranchuk singularity stays always at a⅛ = 1 and its position has nothing to 
do with the value of A. This mechanism is caused by the fact that the part of the S-matrix responsible for the 
production of mesons (Sπ given by Eq. (3.3)) is represented by a unitary operator.

From Eqs (4.6) and (4.7) we see that the high-energy behaviour of the nucleon-nucleon amplitudę is
rtk^k^kj- sl~λl2. (4.10)The same high-energy behaviour characterizes the amplitudes for non-diffractive particie production, as seen from Eq. (4.1) and (3.17). Thus we see thata =1—2/2 (4.11)plays a role of the trajectory of the leading Regge singularity which determines the non- -diffractive nucleon-nucleon interaction7.

5. Generał properties of dijfractiυe amplitudes at high energiesHaving specified the principal scaling properties of the nucleon and meson wave functions we can now discuss the high-energy behaviour of the diffractive amplitudes (3.8). We confine ourselves to the case of the forward scattering of the nucleons. The dependence on the transverse momenta of nucleons is much morę complicated and requires rather 
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involved arguments, as is already known from the work on elastic scattering (Michejda 1967, 1968, de Groot and Ruijgrok 1971).If the nucleons scatter forward, then according to our assumption (4.1)

Qt(<l) = ρi⅛) ≡ e(«) (5.1)and calculations simplify considerably. Using Eq. (3.8) we have
<ql, qfl, fcc, ko\A\kA, kBy = ⅜1) ... ρ(‰hMφL (5.2)where ^{Φ}≡∑(-Dn Σ Φ‰ + fc13-⅛tl- - -‰). (5.3)

n θ (∏) combinationsThe further discussion is greatly simplified by observation that Fn{Φ} can be apρroximately written in the form
Fn{Φ} = (-l)⅛ ■’ (∂Rμ' ” 8Rμκ (I>(R)\=kA+kB +

+ higher order terms in qμl1, ..., qμ∕. (5.4)Since the generalized elastic amplitudę is a function of x ≡ q^y∣s and x0 ≡ q0j yJ~s rather than 0∣∣ and q0, the formula (5.4) is a good approximation for smali |x|. In this aρproxima- tion the diffractive amplitudes are determined entirely by the behaviour of the function 
Φ{R) in the vicinity of the point R — kA + kB.In Appendix A we show that at high energies the generalized elastic amplitudę can be written as

(5.5)
(5.6)
(5-7)
(5.8)

where
and
Here
and Qo, H(λ), κ and s0 are known constants.



As was already pointed out in Section 3, the dependence of the generalized elastic amplitudę (5.5) on 7? is a consequence of the energy and momentum conservation, This can be seen explicitly in formula (5.5). The factors (Z+-2x1), (Z--2x2) and the integration limits reflect the conservation of energy and longitudinal momentum. The factorΩ exp [—(,R± —klχ-k2j.)2∕Ω2] (5.9)reflects the conservation of the transverse momentum (see Apρendix A and de Groot (1972) for a discussion of these points).To obtain the formula for the diffractive amplitudę we have to perform differentiation of Φ given by Eq. (5.5) with respect to R. The inspection of Eq. (5.5) shows that such a differentiation provides two types of contributions to the diffractive amplitudę:(a) those which at large s and fixed configuration of particles (i.e. fixed x1.........xrfand q1, --∙,qn} behave like elastic amplitudę, and(b) those which at large s and fixed configuration of particles reveal the additional negative powers of Ωq = λκ2 log (s∕s0). (5.10)The terms of the type (a) arise by differentiation with respect to Z+ and Z_ (i.e. jR∣∣ and jR0)- Thus they describe this part of the diffraction dissociation which is induced by conservation of the total energy and longitudinal momentum. At high energies (neglecting the corrections of the order (los(⅛))1 these contributions can be written in the 
form

(5.11)where (5.12)and h±(x) are given by Eqs (A. 8) and (A.9) of the Appendix A. Here Λrdenotes the number of produced particles and k denotes the number of particles moving to the right, i.e. with 
x > 0. The characteristic feature of the amplitudę (5.11) is that it vanishes for xl → 0, for 
any i. Thus it describes the production of fast particles, with large longitudinal momenta.The terms of kind (b) arise by differentiating of the factor (5.9) with respect to 7?±. Thus they describe this part of the diffraction dissociation which is induced by transverse momentum conservation. The leading terms of this kind are of the form

(5.13)
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where C(<71-L! ∙∙∙> 9r≠±) ^~ Σ tlj2L ) ■” (^JN-Iχ ’ ^JN1 )' (5∙14)

Jl≠JmIt is seen that, indeed, for fixed x1, ...,xfh qt, qN, the amplitudę (5.13) has additional factor Ωq n which makes it vanish at high energies. However when integrated over momenta of finał particles, the amplitudę (5.13) gives contribution to the diffractive cross-section which at high energies behaves like that of the elastic scattering. Thus the amplitudes(5.13) cannot be ignored in the high-energy limit. The reason for such a behaviour is that the amplitudę (5.13) does not vanish at smali xi. Consequently, the integral over phase- -space increases logarithmically, providing compensation of the factor Ωgtl (see e.g. de Groot (1972) for the discussion of the high-energy behaviour of the phase-space integral). Thus the amplitudę (5.13) describes the production of the slow particles.To conclude this Section we emphasize again that the amplitudę for diffractive production in our model is a sum of terms describing the production of fast particles (smali missing masses to the nucleon) and those describing the production of slow particles (large missing masses to the nucleon)8. These terms have different origin: the first one reflects the conserva- tion of total energy and longitudinal momentum, the second one originates from trans- verse momentum conservation. Also their properties are rather different. Some of them are discussed in next two Sections.

There are of course also mixed terms in which some particles are fast and others are slow.

6. Non-scaling part of the dijfractiυely excited spectrumIn this Section we list briefly some properties of the diffractive dissociation processes described by the amplitudę (5.11). As already noted, this part of the difiractive amplitudę describes the production of fast particles in the centre-of-mass frame.(z) FactorizationThe amplitudę (5.11) satisfies the factorization condition<tfι> q$, kc, kD\At\kA, kf) ζkc = kA, kD ≈ kBjA1lkA, kB) =<⅛ι, ..., qk, kc, kD = kB\A1\kA, kf) ζq∣c+ι> ••■> ⅛jv> kc = kA, kD\Ak\kA, kf). (6.1)Relation (6.1) implies that the study of the production of particles with, say, x > 0 is suf- ficient for the determination of the behaviour of the diffractive production of fast particles at high energies. It should be stressed, however, that this factorization property of the amplitudę is valid only up to the terms which decrase as inverse powers of Ω%, i.e. inverse powers of log (s∣s0). Thus one may expect important corrections to factorization even at quite high energies.
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(z7) Multiplicity distributionFrom formula (5.11) we obtain the differential cross-section for production of N particles with x > 0

dσti π2s ∣Φ0∣2 4N

9 The value of parameter 2 can be estimated from the energy dependence of the exclusive non-difirac- 
tive amplitudes (as seen from Eą. (4.10)) and from the high-energy behaviour of the average multiplicity 
of non-diffractive channels (de Groot and Ruijgrok 1971) by formula <n> = ż log (s∕s0). The exρerimental 
data on energy dependence of exclusive cross-section (Hofmokl and Wróblewski 1970, Hansen, Kittel 
and Morrison 1971) indicate that λ — 2 (de Groot and Ruijgrok 1971). This is not inconsistent with the 
recent data on energy dependence of the average multiplicity (see e.g. Antinucci et al. 1973).

10 E.g. in pp collisions the most important diffractive channels at energies up to 30 GeV are 
pp-l—> (Λ⅛)+p and p+p → (zfπ)- p.

d ⅛c±=⅛ι=o Mk13b Ωq NI

×∖h^(xc = i -x1- ... -¾)∣2x1∣ρ(gι)∣2 ... ¾le(‰)∣2×× ∣⅛-(xd = - ⅜)∣2<52(ςr1^ + ... + qκj)dx1, ..., dxNd2q±l, d2q±N. (6.2)The multiplicity distribution of the diffractively produced system is obtained by integrating Eq. (6.2) over dx1, ,..,dxfi d2qχl ...,d2qj_N with the conditionsxi > 0 and x1 + ... +xn ≤ ł- (6.3)The main property of the multiplicity distribution obtained in this way is that it falls sharply at large N. It can be shown that for a wide class of the nucleon-nucleon probability oo amplitudes all moments of the multiplicity distribution exist, i.e. all sums ∑ σ^Nk are 
N=0finite. This means that the multiplicity distribution of diffractively produced fast particles does not change appreciably with increasing incident energy.To illustrate this point we have calculated the multiplicity distribution for several examples of nucleon-nucleon scattering amplitudes ξ(wi, wk) which determine the function 

h(Z, xc) by formula (A.9). The results of these calculations show that only single particie production is important. For λ ≈ 2 the production of two particles is down by morę than one order of magnitude compared to single particie production9. This dominance of single pion production processes seems to be consistent with existing data: it is well known that in most cases the diffractively excited system with Iow mass consists of two particles: a pion and another particie or resonance10. Although in a simplified model we can discuss neither the resonance production nor their possible quantum numbers, w'e expect that the dominance of single pion production will hołd also in morę realistic models, thus providing an explanation of this important experimental fact.
(iii) Mass spectrumFrom the ρrevious discussion it is elear that the mass distribution is determined almost completely by the channel with only one pion produced. For this channel it is not difficult to transform the momentum distribution (6.2) into the mass distribution. The obtained
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formula shows that the mass distribution dσ∣dJ∕2 for the single pion production channel is energy independent, i.e. it does not scalę. Furthermore, at large J(2 vjq have

(6.4)
i.e. the distribution falls off rather sharply for high-mass excitations. The precise determi- nation of the shape of the mass distribution requires further assumptions on the shape of the amplitudę (5.11).Finally, let us notę that formula (6.4) describing the taił of the mass-spectrum is valid for all channels, with arbitrary number of the produced pions. This can be seen as follows. Noting that

(6.5)
we see from Eq. (6.2) that the average value of Λt2 in any channel is finite7 * * * * 11. Thus dσ]dΛl2 must fali faster than Jl ir. On the other hand, the average of Jli has a logarithmic diver- gence at xl = 0 due to terms (μ2 +q2)2∕x2. This indicates that indeed dσ,idJ∕2~ Jt~f, for any multiplicity.

7. Diffractiυe production of high missing massesWe review here the characteristic properties of the diffractive amplitudę √42 givenby Eq. (5.13). This part of the amplitudę originates from the transverse momentum conser-vation in non-diffractive interactions and describes the production of slow (“wee”) pions, 
i.e. excitation of high-mass systems.As already indicated the energy dependence of the integrated cross-section for the diffractive production of N wee pions

11 Provided h^(xc = 0) = 0. This condition follows from a realistic requirement that the nucleon 
wave function vanishes for slow nucleons in CMS.

This result shows that the amplitudę (5.11) is responsible for the diffractive excitation of Iow mass systems. It shows also that this part of the excitalion spectrum does not scalę. We remind the reader that this part of the spectrum originates from the conservation of energy and longitudinal momentum in non-diffractive interactions.In closing this Section we would like to stress again that the results discussed here are valid only in the high-energy limit. The corrections are of the order (log i)-1 and thus may be important even at high energies.

Qn> kc, kD\A2\kA, ∕cb>∣2×
×<5w(<j1+ ... +qN + kc + kD-kA-kB)d^ d3qfi d3kc d3ko

en ec ed
(7.1)
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is the same as that of the elastic cross section. Thus the diffractive production of wee pions ρrovides a finite fraction of the total diffractive cross-section in the high-energy limit, and may therefore influence considerably the high-energy behaviour of the inclusive spectra. Furthermore we notę that sińce the number of terms in Eq. (5.14) increases considerably with increasing N, the multiplicity distribution of “wee” pions is expected to extend to fairly large multiplicities.For fixed (large) mass of the diffractively excited system (consisting of one nucleon and N wee pions) the cross-section behaves like

dσf, σeιastic (log^2)w 1 
dJlz (log s)n v √∕2 (7-2)where aN are constant coefficients depending on details of the model. Thus for fixed mass of the diffractively excited system the production of wee pions falls as inverse power of logarithm with respect to elastic cross-section. However, as already discussed, the integral of dσ∣dJ∕2 over .∕∕2 gives contribution depending on energy in the same way as elastic scattering. By comparing Eqs (6.4) and (7.2) we see that the high-mass taił of the diffractive excitation spectrum is dominated by production of wee pions. As energy increases, the region where the wee pion production is important moves towards higher masses.One observation can still be madę on the distribution of transverse momenta of wee pions: sińce the amplitudę (5.13) contains products (qjιγ • qJtA) ... (?yw_1± • qJN1), the distribution of weepionsis additionally dampedintheregion of smali transverse momenta. This damping has two effects. Firstly, it reduces significantly the cross-section for diffractive production of wee pions. Secondly, it makes the transverse momentum distribution of wee pions produced by diffractive mechanism different from those produced by non- -diffractive mechanism.To simplify the discussion, we consider only the case in which all pions are wee: 

x1 = χ12 = ...xN = 0. Formula (5.2) predicts, however, also the existence of mixed events, in which some pions are fast and other are slow. These events behave in the way similar to the one described above.Until now we discussed only the behaviour of the individual channels described by the amplitudę(5.13). Itis, however, very interesting to consider also the inclusive diffrac- tive process, i.e. the sum over all diffractive channels for production of wee pions. Using Eq. (7.2) we obtain the following formula for missing mass distribution of inclusive diffrac- tive excitation in the triple Regge region
dJi2 Jl2 log s / i \ log s /

Here
= √-1r(⅛Q.

Jl log s \ log s j 
dU(z)

U (z) = —-—- and U(z) = V afizt'
dz

(7.3)
(7.4)is related to the generating function of the multiplicity distribution.
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To study the scaling properties of the spectrum we introduce the scaling variable

Distribution (7.3) can be written in the form
(7-6)and we see that its scaling properties are determined by the behaviour of the function 

U'(z) in the vicinity of the point z = 1.If the function U'(z) is analytic at z == 1, all moments of the multiplicity distribution (determined by derivatives of U (z) at z = 1) are finite in the high energy limit. In this case the missing mass distribution has the form1dσ 1 
dζ ζ log s (7.7)

i.e. it does not scalę. The violation of scaling is, however, only logarithmic.If we would like the distribution (7.6) to scalę, i.e. to be only a function of ζ12, the function U'(z) must have a simple pole at z = 1. In such a case the mass distribution takes the form

12 Such a behaviour is suggested by the recent data front CERN Lntersecting Storage Ring (Albrow 
et al. 1972) and by the phenomenological analysis of Chan et a!. (1972).

(7.8)Furthermore, all the moments of the multiplicity distribution tend to infinity at high energies. It can be shown that (barring factors like log log s) the correlation parameters behave like (7.9)
8. ConclusionsWe have shown that the overlap matrix formalism can be used for the calculation of the diffractive production of particles. In this approach the diffractive production is generated as a shadow of non-diffractive interactions. This shadow is described by the inelastic elements of the overlap matrix.To study the properties of the diffractively produced systems, we have calculated the overlap matrix in the Uncorrelated Jet Model. Our main conclusions can be summarized as follows.a) In the particular version of the model which we consider there is no diffractive production without correlations in non-diffractive interactions. The energy and momentum conservation introduces the long-range correlations which in turn generate the diffractive 

(7.5)
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production. These energy and momentum conservation effects do not vanish even in the high-energy limit.b) At high energies the conservation of transverse momentum is well separated from conservation of energy and longitudinal momentum. As a consequence, there are two types of diffractively produced systems. This is reflected in the two-component structure of the diffractively excited mass spectrum which splits naturally into an approximately scaling part and a non-scaling part.c) The scaling component of the mass spectrum arises from transverse momentum conservation, and consists of slow (“wee”) particles in the CM system. The energy and longitudinal momentum conservation generate the production of the fast particles in the CM system, which contribute to the non-scaling part of the mass spectrum.The detailed properties of the diffractive channels depend in our model on the assumed properties of the meson and nucleon wave functions describing the non-diffractive inter- actions. We have taken the mesonic wave functions depending only on transverse momentum and scaled longitudinal momentum. The nucleon wave functions were assumed in the factorized form, depending on transverse momenta or on momentum transfer from initial to finał nucleon.For fixed mass of the excited system, the energy dependence of the cross-section for exclusive processes in which there are some slow (wee) particles in the CM system is differ- ent from that of elastic scattering. They fali down faster than the elastic cross-section at the ratę (log s)~n where Λr is the number of wee particles produced in the given channel. How- ever, the cross-sections in these channels integrated over mass of the excited system depend on energy in the same way as the elastic scattering. The taił of the mass distri- bution in the channel with N wee pions is of the form

dσκ 1 (logΛZ2)*"1d√∕2 cc (log ,s)n Ji2 υf c^σN which, integrated up to .Z∕2 ~ s, gives dJ∕2 ~ const.It is seen from Eq. (8.1) that the processes of production of wee pions correspond to the diffractive excitation of large missing masses.The inclusive mass spectrum of the diffractively excited system (summed over all channels with wee pions) is consistent with the scaling property suggested by recent ISR experiments (Albrow et al. 1972) and by phenomenological analyses (see e. g. Chan et al. 1973): depending on the details of the model, the inclusive missing mass spectrum may either scalę exactly, or only up to a factor of 1/log ó;If the inclusive mass distribution scales exactly, the model predicts that in the triple- -Regge region its shape is of the form
da
^dζ

1 (8.2)
where ζ is the scaling variable, ζ = s
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In the Regge language such a behaviour corresponds to the exchange of the singu- larity with interceρt ot = 1, i. e. it describes the so-called triple-pomeron vertex. The loga- rithmic factor indicates that this singularity is a cut rather than a pole, as indeed expected in the models without short rangę order (see e. g. Sivers (1972), for recent discussion and other references).Other characteristic features of these processes are discussed in Section 7.The diffractive production of fast particles is characterized by the amplitudes which have the same energy dependence as the elastic amplitudę, in contrast to the behaviour of the wee particles production which was discussed up to now. Its most important properties can be summarized as follows.(;) It factorizes into parts describing right-moving and left-moving particles up to the terms of the order 1/log s.(//) The amplitudę is a function of transverse momenta and scaled longitudinal mo- menta of all produced particles. It vanishes as xi for xi → 0, where xi is the scaled longitudinal momentum of the particie. This property implies that no wee particles are produced and that the integrated cross-section for production on N fast particles has the same energy dependence as elastic scattering.
(iii) The mass distribution of the diffractively excited system of fast particles shows a large (non-resonant) bump at smali masses, followed by a sharp drop. For large masses, 

i. e. in the triple-Regge limit the spectrum behaves as
This asymptotic behaviour at large M2 is independent of multiplicity. Formula (8.3) shows that the considered processes contribute to the non-scaling part of the diffractively excited mass spectrum.(zt>) It can be shown under rather generał conditions that all moments of the multiplicity distribution are finite and energy independent. In fact, most of the diffractive production of fast particles goes into single pion production. This feature seems attractive, be- cause it may perhaps serve as qualitative explanation of the experimental evidence that, for smali missing mass, the diffractive dissociation proceeds (in most of the known cases) 
via two-body intermediate steps (see e. g. Morrison 1970).In closing this Section, let us observe that the generał picture of the high-energy interactions described in this paper is the same as in the so-called two-component models of particie production (c/. Wilson 1970, Fiałkowski and Miettinen 1972, Frazer et al. 1972, Harari and Rabinovici 1972, Quigg and Jackson 1972). However, in our approach the diffractive and non-diffractive components are closely related through the unitarity condi- tion.Another important feature of our model is that the non-diffractive component does not have the property of short rangę order. In the absence of short-range order the leading (Pomeranchuk) singularity in diffractive scattering is a cut rather than a pole and conse- quently our results are different from those obtained by other authois (Frazer and Snider 1973, Kajantie and Ruuskanen 1973).
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APPENDIX A
High-energy behaviour of the generalized elastic amplitudesTo determine the high-energy behaviour of Φt→i(R), we use the known formula for the asymptotic behaviour of the sum of phase-space integrals (de Groot 1971, 1972, and Bassetto, Toller and Sertorio 1971)

(Al)
where (A2) 

(A3)
and

(A4)
Here Q2, μ and κ2 are constants depending on the shape of the transverse momentum distribution of pions.Using Eqs (Al), (3.9), (5.7) and (5.8) we obtain

(A5)



679 Here x12 = ∣⅛12 ∣i∣∕5∕s> so ’s a constant and Z = R∣yJs. Thus the generalized elastic amplitudę can be written in the form
ι____________ Z + /2 Z - /2

Φi→t(R) = f EaEbEcEd s?0H(X) ∫ dxl ∫ dx2(Z+-2xi)λ~i xo o× (Z_-2x2)λ~1 ∫ d2klλd2k2λξ*(wc, w^(wA, wi)ξ*(wo, w2)ξ(wa, w2) x
× exp [-(Λi-fclχ-fc2χ)2∕Ω2]∕Ω2. (A6)In the high-energy limit we have Ω → ∞ and the leading term simplifies considerably to give the factorized form

----------— s'0H(λ) ,Φj→tV'0 - v EλEbEcEd —2 ⅛+(Z+, xλ, xc)h-(Z-, xb, x2>) +
+ terms of the order of ΩJ (A7)where

Z + ∕2h+(Z+,xx, xc) = ∫ dx(Z+-2x)λ~l ∫ d2fcιj,ξ*(wc, wι)ξ(w^, w1) (A8)oand
Z-/2/r_(Z_, xb, xo) = ∫ dx(Z_ -2x)λ^1 ∫ d2k21ξ*(wo, w2)ξ(wa, w2) (A9)oand Ωo is given by Eq. (5.19)

Ωq = λκ2 log — . (A10)so
APPENDIX B

Calculation of the overlap matrixIn this Appendix we derive the formulae (3.7)—(3.9). Starting from Eq. (3.1) we replace the <5-function of energy and momentum conservation by its Fourier representation
δw(P-P) = -1L fd4χei<p^-p> jc(2π)4 J (BI)

and express the total four-momentum operator P by creation and annihilation operators of pions and nucleons
(B2)
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Using (BI) and (B2), the Tn matrix can be written in the form

r,v==(W. d4xTjv(x)e -iP ■ x (B3)
The Fourier transform ‰(x) factorizes into nucleon and meson parts:Tn(x) = Tn(x)Sa(x), (B4)where Tλ(x) = exp θ k ∙ xb*(k)b(k)j T„ (B5)
and Sπ(x) = exp k ■ xα+(A)α(A)^ S, (B6)
The overlap operator can now be written as

× Tt(x')Γn(x)Sj(x')Sπ(x), (B7)where P and P' are the total four-momenta of initial and finał state, respectively.The most complicated part of the derivation is the calculation of the operator 
S∣ (x')Sx(x). The crucial step in this calculation is the identity

(B8)

π'

which can be derived from the generał formula
Σ^>

k = 0

(B9)
where A and B are any operators and√40{B} = B, Al{B} = [Λ∕-,{B}]∙ (B10)
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Using Eq. (B8), the operator S+(x,)Sπ(x) can be transformed into

S⅛x')Sπ(x) = expQ≤^∣ρ(fc)∣Vu^x,-l)) × 

×

× exP θ j e(9)α⅝) (e'"'<x x'y~ 1)) ×
exp (l f ^(p) ρ*^a^ ^e ip <x x)_ 1))exp (i f ĘT)k (χ~x'^k^k^ ■

(Bil)The last gives step is the calcułation of the matrix element for production of N pions which

×<3ι, ...,⅛jexp^∙ j^(eiβ'cx *'>-l)ρ(ρ)αt(ρ)^∣0> =
(B12)

In this formula the first factor describes the elastic shadow scattering N — 0 and the other factors are characteristic for the production. The product of the last factors is a sum of 2iv terms containing exponential depending on momenta of produced pions. Each of these terms has a simple interpretation which is presented graphically in Fig. 1.Eq. (B12) is a special case of the generał formula
× exp (iPπ ∙ (x-x,)) <0∣ ∏ (α(√j∙) + iρ(qj) (e'tj'(x x',-1)) x 7=1× ∏ (αt(β1) + ⅛*(a) (e-iβ-∙<χ-χ'>-l)) |0>, (B13)4 = 1where

pπ = ∑ Qf
1=1

(B14)Inserting Eq. (B12) into Eq. (B7) and performing integration over x and x' we obtain the formulae (3.7)—(3.9), where we additionally distinguish exρlicitly between probability amplitudes ρ(q) for the initial and finał states.



682
REFERENCES

Albrow, M. G., et al., CERN-Daresbury-Utrecht-Lancaster—Manchester Coo., Phys. Letters, 44, 207 
(1973).

Antinucci, M., et αl., Nuovo Cimento Letters, 6, 121 (1973).
Auerbach, S., Aviv, R., Sugar, R., Blankenbecler, R., Phys. Rev., D6, 2216 (1972).
Aviv, R., Sugar, R., Blankenbecler, R., Phys. Reυ., D5, 3252 (1972).
Baker, M., Blankenbecler, R., Phys. Rev., 128, 415 (1962).
Bassetto, A., Toller, M., Sertorio, L., Nuclear Phys., B34, 1 (1971).
Białas, A., Van Hove L., Nuovo Cimento, 38, 1385 (1965).
Białas, A., Zalewski, K., Nuovo Cimento, 46, 425 (1966).
Chan, H. M., Miettinen, H. I., Roberts, R. G., Nuclear Phys., B54, 411 (1973).
Feinberg, E. L., Pomeranchuk, I., Suppl. Nuovo Cimento, 3, 652 (1956).
Fiałkowski, K., Miettinen, H. I., Phys. Letters, B43, 61 (1973).
Frazer, W. R., Peccei, R. D., Pinsky, S. S., Tan, C. I., Phys. Rev., D7, 2647 (1973). 

peripheral plus diffractiυe production, UCSD— 10P10— 113, 1972.
Frazer, W. R., Snider, D. R., Phys. Letters, B45, 136 (1973).
Fulco, J. R., Sugar, R. L., Unitary models of the Pomeranchuk singularity, Santa Barbara preprint, 1973.
Good, M. L„ Walker, W. D., Phys. Ret., 12C, 1857 (1960).
de Groot, E. H., A model for inclusiυe nucleon-nucleon reactions, Thesis, Amsterdam 1971.
de Groot, E. H„ Nuclear Phys., B48, 295 (1972).
de Groot, E. H., Ruijgrok, Th. W., Nuclear Phys., B27, 45 (1971).
Hansen, J. D., Kittel, W., Morrison, D. R. O., Nuclear Phys., B25, 605 (1971).
Harari, H., Phys. Rev. Letters, 29, 1708 (1972).
Harari, H., Rabinovici, E., Phys. Letters, B43, 49 (1973).
HofmokI, T., Wróblewski, A., Phys. Letters, 31B, 391 (1970).
Kajantie, K., Ruuskanen, P. V., Phys. Letters, B45, 149 (1973).
Lubatti, H. J., Acta Phys. Polon., B3, 721 (1972).
Michejda, L., Nuclear Phys., B4, 113 (1967).
Michejda, L., Fortschr. Phys., 16, 707 (1968).
Morrison, D. R. O., Kiev Conference report, CERN preprint, D. Ph. 11/ Phys. 71-10, 1971.
Neff, Th. L., Fragmentation and multiperipheral dynamics: a connection through unitarity, Berkeley preprint, 

LBL-1544 (1973).
Quigg, C., Jackson, J. D., On a two-component interpretation of multiplicity distributions, NAL preprint 

(1972).
Sivers, D„ Phys. Reυ., D7, 3332/1973).
Sivers, D., Thomas, G. H., Phys. Rev., D6, 1961 (1972).
Skard, J. A. J„ Fulco, J. R., Phys. Rev., D8, 312 (1973).
Sugar, R. L., Phys. Rev., D8, 1134 (1973).
Van Hove, L., Ret. Mod. Phys., 36, 525 (1964).
Wilson, K. G.. Some experiments on multiple production, Corncll preprint (1970).


