237 research outputs found

    Deconstruction of Neurotrypsin Reveals a Multi-factorially Regulated Activity Affecting Myotube Formation and Neuronal Excitability

    Get PDF
    Neurotrypsin (NT) is a highly specific nervous system multi-domain serine protease best known for its selective processing of the potent synaptic organizer agrin. Its enzymatic activity is thought to influence processes of synaptic plasticity, with its deregulation causing accelerated neuromuscular junction (NMJ) degeneration or contributing to forms of mental retardation. These biological effects are likely to stem from NT-based regulation of agrin signaling. However, dissecting the exact biological implications of NT-agrin interplay is difficult, due to the scarce molecular detail regarding NT activity and NT-agrin interactions. We developed a strategy to reliably produce and purify a catalytically competent engineered variant of NT called "NT-mini" and a library of C-terminal agrin fragments, with which we performed a thorough biochemical and biophysical characterization of NT enzyme functionality. We studied the regulatory effects of calcium ions and heparin, identified NT's heparin-binding domain, and discovered how zinc ions induce modulation of enzymatic activity. Additionally, we investigated myotube differentiation and hippocampal neuron excitability, evidencing a dose-dependent increase in neuronal activity alongside a negative impact on myoblast fusion when using the active NT enzyme. Collectively, our results provide in vitro and cellular foundations to unravel the molecular underpinnings and biological significance of NT-agrin interactions

    Fenton chemistry and oxidative stress mediate the toxicity of the β-amyloid peptide in a Drosophila model of Alzheimer’s disease

    Get PDF
    The mechanism by which aggregates of the β-amyloid peptide (Aβ) mediate their toxicity is uncertain. We show here that the expression of the 42-amino-acid isoform of Aβ (Aβ1–42) changes the expression of genes involved in oxidative stress in a Drosophila model of Alzheimer’s disease. A subsequent genetic screen confirmed the importance of oxidative stress and a molecular dissection of the steps in the cellular metabolism of reactive oxygen species revealed that the iron-binding protein ferritin and the H2O2 scavenger catalase are the most potent suppressors of the toxicity of wild-type and Arctic (E22G) Aβ1–42. Likewise, treatment with the iron-binding compound clioquinol increased the lifespan of flies expressing Arctic Aβ1–42. The effect of iron appears to be mediated by oxidative stress as ferritin heavy chain co-expression reduced carbonyl levels in Aβ1–42 flies by 65% and restored the survival and locomotion function to normal. This was achieved despite the presence of elevated levels of the Aβ1–42. Taken together, our data show that oxidative stress, probably mediated by the hydroxyl radical and generated by the Fenton reaction, is essential for Aβ1–42 toxicity in vivo and provide strong support for Alzheimer’s disease therapies based on metal chelation

    Altering APP Proteolysis: Increasing sAPPalpha Production by Targeting Dimerization of the APP Ectodomain

    Get PDF
    One of the events associated with Alzheimer's disease is the dysregulation of α- versus β-cleavage of the amyloid precursor protein (APP). The product of α-cleavage (sAPPα) has neuroprotective properties, while Aβ1-42 peptide, a product of β-cleavage, is neurotoxic. Dimerization of APP has been shown to influence the relative rate of α- and β- cleavage of APP. Thus finding compounds that interfere with dimerization of the APP ectodomain and increase the α-cleavage of APP could lead to the development of new therapies for Alzheimer's disease. Examining the intrinsic fluorescence of a fragment of the ectodomain of APP, which dimerizes through the E2 and Aβ-cognate domains, revealed significant changes in the fluorescence of the fragment upon binding of Aβ oligomers—which bind to dimers of the ectodomain— and Aβ fragments—which destabilize dimers of the ectodomain. This technique was extended to show that RERMS-containing peptides (APP695 328–332), disulfiram, and sulfiram also inhibit dimerization of the ectodomain fragment. This activity was confirmed with small angle x-ray scattering. Analysis of the activity of disulfiram and sulfiram in an AlphaLISA assay indicated that both compounds significantly enhance the production of sAPPα by 7W-CHO and B103 neuroblastoma cells. These observations demonstrate that there is a class of compounds that modulates the conformation of the APP ectodomain and influences the ratio of α- to β-cleavage of APP. These compounds provide a rationale for the development of a new class of therapeutics for Alzheimer's disease

    Membrane topology of gp41 and amyloid precursor protein: interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment

    Get PDF
    The amyloid precursor protein (APP), that plays a critical role in the development of senile plaques in Alzheimer disease (AD), and the gp41 envelope protein of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome (AIDS), are single-spanning type-1 transmembrane (TM) glycoproteins with the ability to form homo-oligomers. In this review we describe similarities, both in structural terms and sequence determinants of their TM and juxtamembrane regions. The TM domains are essential not only for anchoring the proteins in membranes but also have functional roles. Both TM segments contain GxxxG motifs that drive TM associations within the lipid bilayer. They also each possess similar sequence motifs, positioned at the membrane interface preceding their TM domains. These domains are known as cholesterol recognition/interaction amino acid consensus (CRAC) motif in gp41 and CRAC-like motif in APP. Moreover, in the cytoplasmic domain of both proteins other alpha-helical membranotropic regions with functional implications have been identified. Recent drug developments targeting both diseases are reviewed and the potential use of TM interaction modulators as therapeutic targets is discussed

    Modulation of γ-Secretase Activity by Multiple Enzyme-Substrate Interactions: Implications in Pathogenesis of Alzheimer's Disease

    Get PDF
    BACKGROUND: We describe molecular processes that can facilitate pathogenesis of Alzheimer's disease (AD) by analyzing the catalytic cycle of a membrane-imbedded protease γ-secretase, from the initial interaction with its C99 substrate to the final release of toxic Aβ peptides. RESULTS: The C-terminal AICD fragment is cleaved first in a pre-steady-state burst. The lowest Aβ42/Aβ40 ratio is observed in pre-steady-state when Aβ40 is the dominant product. Aβ42 is produced after Aβ40, and therefore Aβ42 is not a precursor for Aβ40. The longer more hydrophobic Aβ products gradually accumulate with multiple catalytic turnovers as a result of interrupted catalytic cycles. Saturation of γ-secretase with its C99 substrate leads to 30% decrease in Aβ40 with concomitant increase in the longer Aβ products and Aβ42/Aβ40 ratio. To different degree the same changes in Aβ products can be observed with two mutations that lead to an early onset of AD, ΔE9 and G384A. Four different lines of evidence show that γ-secretase can bind and cleave multiple substrate molecules in one catalytic turnover. Consequently depending on its concentration, NotchΔE substrate can activate or inhibit γ-secretase activity on C99 substrate. Multiple C99 molecules bound to γ-secretase can affect processive cleavages of the nascent Aβ catalytic intermediates and facilitate their premature release as the toxic membrane-imbedded Aβ-bundles. CONCLUSIONS: Gradual saturation of γ-secretase with its substrate can be the pathogenic process in different alleged causes of AD. Thus, competitive inhibitors of γ-secretase offer the best chance for a successful therapy, while the noncompetitive inhibitors could even facilitate development of the disease by inducing enzyme saturation at otherwise sub-saturating substrate. Membrane-imbedded Aβ-bundles generated by γ-secretase could be neurotoxic and thus crucial for our understanding of the amyloid hypothesis and AD pathogenesis

    An evaluation of the self-assembly enhancing properties of cell-derived hexameric amyloid-β

    Get PDF
    A key hallmark of Alzheimer’s disease is the extracellular deposition of amyloid plaques composed primarily of the amyloidogenic amyloid-β (Aβ) peptide. The Aβ peptide is a product of sequential cleavage of the Amyloid Precursor Protein, the first step of which gives rise to a C-terminal Fragment (C99). Cleavage of C99 by γ-secretase activity releases Aβ of several lengths and the Aβ42 isoform in particular has been identified as being neurotoxic. The misfolding of Aβ leads to subsequent amyloid fibril formation by nucleated polymerisation. This requires an initial and critical nucleus for self-assembly. Here, we identify and characterise the composition and self-assembly properties of cell-derived hexameric Aβ42 and show its assembly enhancing properties which are dependent on the Aβ monomer availability. Identification of nucleating assemblies that contribute to self-assembly in this way may serve as therapeutic targets to prevent the formation of toxic oligomers
    corecore