43 research outputs found

    SP701-A-Growing and Harvesting Switchgrass for Ethanol Production in Tennessee

    Get PDF
    Switchgrass is a warm-season perennial grass native to North America. The plant can reach heights up to 10 feet with an extensive root system. Once established, switchgrass well-managed for biomass should have a productive life of 10-20 years. Within the stand, switchgrass is an extremely strong competitor. However, it is not considered an invasive plant. Switchgrass adapts well to a variety of soil and climatic conditions. It is most productive on moderately well to well-drained soils of medium fertility and a soil pH at 5.0 or above. The high cellulosic content of switchgrass makes it a favorable feedstock for ethanol production. It is anticipated that switchgrass can yield sufficient biomass to produce approximately 500 gallons of ethanol per acre. While the Tennessee Biofuels Initiative includes a demonstration plant to make ethanol from switchgrass, the market for switchgrass as an energy crop remains limited. Producers will likely need to be located within 30 to 50 miles of a cellulosic ethanol plant. Producing switchgrass for energy generally occurs under some form of contractual arrangement with the end-user. To reap potential benefits from using switchgrass for cellulosic ethanol production, the system of production must be profitable for farmers and energy producers, as well as cost effective for consumers

    Speech Communication

    Get PDF
    Contains table of contents for Part IV, table of contents for Section 1, an introduction, reports on seven research projects and a list of publications.C.J. Lebel FellowshipDennis Klatt Memorial FundNational Institutes of Health Grant T32-DC00005National Institutes of Health Grant R01-DC00075National Institutes of Health Grant F32-DC00015National Institutes of Health Grant R01-DC00266National Institutes of Health Grant P01-DC00361National Institutes of Health Grant R01-DC00776National Science Foundation Grant IRI 89-10561National Science Foundation Grant IRI 88-05680National Science Foundation Grant INT 90-2471

    Speech Communication

    Get PDF
    Contains table of contents for Part V, table of contents for Section 1, reports on six research projects and a list of publications.C.J. Lebel FellowshipDennis Klatt Memorial FundNational Institutes of Health Grant R01-DC00075National Institutes of Health Grant R01-DC01291National Institutes of Health Grant R01-DC01925National Institutes of Health Grant R01-DC02125National Institutes of Health Grant R01-DC02978National Institutes of Health Grant R01-DC03007National Institutes of Health Grant R29-DC02525National Institutes of Health Grant F32-DC00194National Institutes of Health Grant F32-DC00205National Institutes of Health Grant T32-DC00038National Science Foundation Grant IRI 89-05249National Science Foundation Grant IRI 93-14967National Science Foundation Grant INT 94-2114

    Speech Communication

    Get PDF
    Contains table of contents for Part IV, table of contents for Section 1 and reports on five research projects.Apple Computer, Inc.C.J. Lebel FellowshipNational Institutes of Health (Grant T32-NS07040)National Institutes of Health (Grant R01-NS04332)National Institutes of Health (Grant R01-NS21183)National Institutes of Health (Grant P01-NS23734)U.S. Navy / Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Office of Naval Research (Contract N00014-82-K-0727

    Speech Communication

    Get PDF
    Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NSO7040)National Institutes of Health (Grant 5 R01 NS04332)National Institutes of Health (Grant 5 R01 NS21183)National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 1 PO1-NS23734)National Science Foundation (Grant BNS 8418733)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0290)National Institutes of Health (Grant RO1-NS21183), subcontract with Boston UniversityNational Institutes of Health (Grant 1 PO1-NS23734), subcontract with the Massachusetts Eye and Ear Infirmar

    Identification of Novel Genetic Markers Associated with Clinical Phenotypes of Systemic Sclerosis through a Genome-Wide Association Strategy

    Get PDF
    Contains fulltext : 97006.pdf (publisher's version ) (Open Access)The aim of this study was to determine, through a genome-wide association study (GWAS), the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc). We considered limited (lcSSc) and diffuse (dcSSc) cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA), and anti-topoisomerase I (ATA). Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32x10(-12), OR = 0.75). Also, rs12540874 in GRB10 gene (P = 1.27 x 10(-6), OR = 1.15) and rs11047102 in SOX5 gene (P = 1.39x10(-7), OR = 1.36) showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79x10(-61), OR = 2.48), in the HLA-DPA1/B1 loci with ATA (P = 4.57x10(-76), OR = 8.84), and in NOTCH4 with ACA P = 8.84x10(-21), OR = 0.55) and ATA (P = 1.14x10(-8), OR = 0.54). We have identified three new non-HLA genes (IRF8, GRB10, and SOX5) associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc

    Prevalence of urinary incontinence in pregnant and postpartum women in the Democratic Republic of Congo

    No full text
    Introduction and hypothesis: The objective was to describe the prevalence of urinary incontinence in pregnant and postpartum women in the Democratic Republic of Congo and to identify factors associated with urinary incontinence (UI) in these populations. Methods: We interviewed eligible women who sought prenatal or postnatal reproductive health clinic consultations over a 2-year period. Interviews collected information about demographics, obstetric history, and urinary incontinence symptoms, as well as the impact on the quality of life, via a validated questionnaire. Descriptive analyses compared women with and without urinary incontinence and compared characteristics of UI, stratified by pregnancy status. Logistic regression identified factors associated with UI among the entire sample, pregnant women, and postpartum women. Results: Overall, 268 out of 880 women had UI (30.5%); the prevalence was 33.4% (168 out of 503) among pregnant women and 26.5% (100 out of 377) among postpartum women, p = 0.03. Women who were pregnant were significantly more likely to experience stress incontinence (p = 0.01) and less likely to report moderate or large amounts of leakage (p = 0.002). A history of macrosomia and being currently pregnant were associated with UI in the entire sample (p \u3c 0.05). Among pregnant women, the risk of UI decreased with increasing gestational age and increased with a history of macrosomia (p ≤ 0.01). Among postpartum women, a history of macrosomia and prior episiotomy were associated with UI (p \u3c 0.05). Conclusions: Urinary incontinence is prevalent in pregnant and postpartum women in the Democratic Republic of Congo and is associated with a history of macrosomia. Efforts should focus on screening, evaluation, and treatment

    Histopathological and Immunological Findings in the Common Marmoset Following Exposure to Aerosolized SARS-CoV-2

    No full text
    There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1–3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19
    corecore