320 research outputs found

    The galaxy’s gas content regulated by the dark matter halo mass results in a superlinear M BH–M ⋆ Relation

    Get PDF
    Supermassive black holes (SMBHs) are tightly correlated with their hosts, but the origin of such connection remains elusive. To explore the cosmic buildup of this scaling relation, we present an empirically motivated model that tracks galaxy and SMBH growth down to z = 0. Starting from a random mass seed distribution at z = 10, we assume that each galaxy evolves on the star-forming "main sequence" (MS) and each BH follows the recently derived stellar mass (M sstarf) dependent ratio between BH accretion rate and star formation rate, going as BHAR/SFRM0.73[+0.22,0.29]\mathrm{BHAR}/\mathrm{SFR}\propto {M}_{\star }^{0.73[+0.22,-0.29]}. Our simple recipe naturally describes the BH–galaxy buildup in two stages. At first, the SMBH lags behind the host that evolves along the MS. Later, as the galaxy grows in M sstarf, our M sstarf-dependent BHAR/SFR induces a superlinear BH growth, as MBHM1.7{M}_{\mathrm{BH}}\propto {M}_{\star }^{1.7}. According to this formalism, smaller BH seeds increase their relative mass faster and earlier than bigger BH seeds, at fixed M sstarf, thus setting along a gradually tighter M BH–M sstarf locus toward higher M sstarf. Assuming reasonable values of the radiative efficiency epsilon ~ 0.1, our empirical trend agrees with both high-redshift model predictions and intrinsic M BH–M sstarf relations of local BHs. We speculate that the observed nonlinear BH–galaxy buildup is reflected in a twofold behavior with dark matter halo mass (M DM), displaying a clear turnover at M DM ~ 2 × 1012 M ⊙. While supernovae-driven feedback suppresses BH growth in smaller halos (BHAR/SFRMDM1.6\mathrm{BHAR}/\mathrm{SFR}\propto {M}_{\mathrm{DM}}^{1.6}), above the M DM threshold cold gas inflows possibly fuel both BH accretion and star formation in a similar fashion (BHAR/SFRMDM0.3\mathrm{BHAR}/\mathrm{SFR}\propto {M}_{\mathrm{DM}}^{0.3})

    Caught in the act: direct detection of Galactic Bars in the buckling phase

    Get PDF
    The majority of massive disk galaxies, including our own, have stellar bars with vertically thick inner region, known as “boxy/peanut-shaped” (B/P) bulges. The most commonly suggested mechanism for the formation of B/P bulges is a violent vertical “buckling” instability in the bar, something that has been seen in N-body simulations for over 20 years, but never identified in real galaxies. Here, we present the first direct observational evidence for ongoing buckling in two nearby galaxies (NGC 3227 and NGC 4569), including characteristic asymmetric isophotes and (in NGC 4569) stellar kinematic asymmetries that match buckling in simulations. This confirms that the buckling instability takes place and produces B/P bulges in real galaxies. A toy model of bar evolution yields a local fraction of buckling bars consistent with observations if the buckling phase lasts ∼0.5–1 Gyr, in agreement with simulations

    High star formation rates in turbulent atomic-dominated gas in the interacting galaxies IC 2163 and NGC 2207

    Get PDF
    This is a pre-copyedited, author produced PDF of an article accepted for publication in The Astrophysical Journal following peer review. The version of record (The Astrophysical Journal, 823:26, 2016 May 18) is available on line at doi:10.3847/0004-637X/823/1/26 © 2016. The American Astronomical Society. All rights reserved.CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, Halpha and 24 microns to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207, where the HI velocity dispersion is high, 40 - 50 km/s. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.Peer reviewedFinal Accepted Versio

    GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    Get PDF
    We investigate giant molecular cloud (GMCs) collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of three dimensional, magnetohydrodynamics (MHD), adaptive mesh refinement (AMR) simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region (PDR) models that span the atomic to molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; 13CO(J=2-1), 13CO(J=3-2), and 12CO(J=8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds

    Calibrating the James Webb Space telescope filters as star formation rate indicators

    Get PDF
    We have calibrated the 6.5m James Webb Space Telescope (JWST) mid-infrared (MIR) filters as star formation rate (SFR) indicators, using JWST photometry synthesized from Spitzer spectra of 49 low-redshift galaxies, which cover a wider luminosity range than most previous studies. We use Balmer-decrement-corrected Hα luminosity and synthesized MIR photometry to empirically calibrate the Spitzer, WISE, and JWST filters as SFR indicators. Our Spitzer and WISE calibrations are in good agreement with recent calibrations from the literature. While MIR luminosity may be directly proportional to SFR for high-luminosity galaxies, we find a power-law relationship between MIR luminosity and SFR for low-luminosity galaxies. We find that for galaxies with an Hα luminosity of 1040 erg s-1 (corresponding to an SFR of~0.055 M yr-1), the corresponding JWST MIR ν Lν luminosity is between 1040.50 and 1041.00 erg s-1. Power-law fits of JWST luminosity as a function of Hα luminosity have indices between 1.17 and 1.32. We find that the scatter in the JWST filter calibrations decreases with increasing wavelength from 0.39 to 0.20 dex, although F1000W is an exception where the scatter is just 0.24 dex

    The Molecular Gas Environment in the 20 KMS−1 Cloud in the Central Molecular Zone

    Get PDF
    We recently reported a population of protostellar candidates in the 20 kms−1 cloud in the Central Molecular Zone of the Milky Way, traced by H2O masers in gravitationally bound dense cores. In this paper, we report high-angular-resolution (_3′′) molecular line studies of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1.3 mm are obtained using the Submillimeter Array. Five NH3 inversion lines and the 1.3 cm continuum are observed with the Karl G. Jansky Very Large Array. The interferometric observations are complemented with single-dish data. We find that the CH3OH, SO, and HNCO lines, which are usually shock tracers, are better correlated spatially with the compact dust emission from dense cores among the detected lines. These lines also show enhancement in intensities with respect to SiO intensities toward the compact dust emission, suggesting the presence of slow shocks or hot cores in these regions. We find gas temperatures of &100 K at 0.1-pc scales based on RADEX modelling of the H2CO and NH3 lines. Although no strong correlations between temperatures and linewidths/H2O maser luminosities are found, in high-angular-resolution maps we notice several candidate shock heated regions offset from any dense cores, as well as signatures of localized heating by protostars in several dense cores. Our findings suggest that at 0.1-pc scales in this cloud star formation and strong turbulence may together affect the chemistry and temperature of the molecular gas

    The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone

    Get PDF
    The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at 0.9\sim 0.9 pc spatial and 2.0\sim 2.0 km s1^{-1} spectral resolution. In this paper, we present data on the inner 250\sim 250 pc (1.41.4^\circ) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J,K) = (1,1) - (6,6) to derive column density, kinematics, opacity and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of 8168-16 km s1^{-1} and extended regions of optically thick (τ>1\tau > 1) emission. Two components in kinetic temperature are detected at 255025-50 K and 6010060-100 K, both being significantly hotter than dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. (2015) that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density and line width. We find heating rates between 50\sim 50 and 100\sim 100 K Myr1^{-1} along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics and the observation of an evolutionary sequence of increasing star formation activity with orbital phase

    Detecting Radio AGN Signatures in Red Geysers

    Get PDF
    A new class of quiescent galaxies harboring possible AGN-driven winds has been discovered using spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA survey. These galaxies, termed "red geysers", constitute 5−10% of the local quiescent population and are characterized by narrow bisymmetric patterns in ionized gas emission features. Cheung et al. argued that these galaxies host large-scale AGN-driven winds that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample with similar stellar mass, redshift, rest frame NUV−r color, axis ratio and presence of ionized gas. We have used the 1.4 GHz radio continuum data from VLA FIRST survey to stack the radio flux from the red geyser and control samples. In addition to a 3 times higher FIRST detection rate, we find that red geysers have a 5σ higher level of average radio flux than control galaxies. After restricting to rest-frame NUV−r color > 5 and checking mid-IR WISE photometry, we rule out star formation contamination and conclude that red geysers are associated with more active AGN. Red geysers and a possibly-related class with disturbed Hα emission account for 40\% of all radio-detected red galaxies with log (M⋆/M⊙)<11. Our results support a picture in which episodic AGN activity drives large-scale-relatively weak ionized winds that may provide a feedback mechanism for many early-type galaxies
    corecore