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Abstract

A new class of quiescent galaxies harboring possible AGN-driven winds has been discovered using spatially
resolved optical spectroscopy from the ongoing SDSS-IV MaNGA survey. These galaxies, termed “red geysers,”
constitute 5%–10% of the local quiescent population and are characterized by narrow bisymmetric patterns in
ionized gas emission features. Cheung et al. argued that these galaxies host large-scale AGN-driven winds that may
play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is
ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to
a matched control sample with similar stellar mass, redshift, rest-frame NUV−r color, axis ratio, and presence of
ionized gas. We have used the 1.4 GHz radio continuum data from the VLA FIRST survey to stack the radio flux
from the red geyser and control samples. In addition to a three times higher FIRST detection rate, we find that red
geysers have a 5σ higher level of average radio flux than control galaxies. After restricting to rest-frame NUV−r
color >5 and checking mid-IR WISE photometry, we rule out star formation contamination and conclude that red
geysers are associated with more active AGNs. Red geysers and a possibly related class with disturbed Hα
emission account for 40% of all radio-detected red galaxies with log(Må/Me)<11. Our results support a picture
in which episodic AGN activity drives large-scale, relatively weak ionized winds that may provide a feedback
mechanism for many early-type galaxies.

Key words: galaxies: evolution – galaxies: formation – galaxies: general

1. Introduction

The level of star formation in galaxies is known to be
bimodal (Strateva et al. 2001; Blanton et al. 2003; Kauffmann
et al. 2003), with star-forming galaxies often referred to as the
“blue cloud” and galaxies without significant star formation
falling under the “red-sequence” category. The latter is
characterized by old stellar populations (6 Gyr) and short
star formation timescales (1 Gyr; Tinsley 1979; Worthey
et al. 1992; Trager et al. 2000; Thomas et al. 2005; Graves &
Schiavon 2008; Choi et al. 2014; Conroy et al. 2014; Worthey
et al. 2014). The abundance of these quiescent galaxies has
increased by several factors since z∼2 (Bell et al. 2004;
Bundy et al. 2006; Faber et al. 2007; Ilbert et al. 2010;
Moustakas et al. 2013), which implies that more and more

galaxies are transitioning to quiescence. The increase in the
red-and-dead population indicates that once galaxies shut off
their star formation by some mechanism, they must stay
quenched for a long time.
A permanent shutdown of star formation is hard to explain,

because the quiescent population is not devoid of gas and is
also capable of accreting new gas to eventually start forming
stars again. Major surveys have shown an abundance of gas in
quiescent galaxies (Demoulin-Ulrich et al. 1984; Buson et al.
1993; Binette et al. 1994), which if left to itself, should
ultimately cool and form stars. This gas comes from a variety
of sources like stellar mass loss from evolved stars (e.g.,
Mathews & Brighenti 2003; Ciotti & Ostriker 2007) or minor
mergers. If all this gas formed stars, we would expect the global
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stellar mass density to be larger by factors of a few than the
observed at z=0. This implies that an additional feedback
mechanism is required to maintain the suppression of star
formation in galaxies on the red sequence (Benson et al. 2003).

While a number of feedback mechanisms have been
proposed, including interstellar medium (ISM) heating from
stellar winds (Conroy et al. 2015) and gravitational effects
induced by galaxy bulges (Martig et al. 2009), the most popular
explanation has been active galactic nucleus (AGN) feedback
(Binney & Tabor 1995; Ciotti & Ostriker 2001; Croton et al.
2006; Fabian 2012; Heckman & Best 2014; Yuan & Narayan
2014). It states that the energy released from the central AGN
in the host galaxy in the form of winds, outflows, or jets can
significantly effect the evolution of the galaxy by a feedback
mechanism, which can take place in two different ways (Fabian
2012; Morganti 2017). The “quasar” or “radiative” mode
feedback, mostly associated with luminous AGNs or massive
quasars, releases huge amounts of energy to its surroundings by
radiation from the accretion disk and drives powerful gas
outflows, which remove gas altogether from the galactic
potential well (Cattaneo et al. 2009; Fabian 2012). The “radio
mode,” on the other hand, is prevalent mostly in low- to
moderate-luminosity AGNs where the black hole accretes at a
lower rate and the radio AGN present in the center of the
galaxy deposits energy into the surrounding gas via jets or
winds, heating it and suppressing star formation (Binney &
Tabor 1995; Ciotti & Ostriker 2001, 2007; Bower et al. 2006;
Croton et al. 2006; McNamara & Nulsen 2007; Cattaneo et al.
2009; Ciotti et al. 2010; Fabian 2012; Heckman & Best 2014;
Yuan & Narayan 2014). Direct observational evidence for this
low-luminosity radio-mode, or “maintenance-mode,” feedback
is limited to several nearby clusters (Fabian 1994, 2012; Dunn
& Fabian 2006; Fabian et al. 2006; McNamara & Nulsen 2007;
Cattaneo et al. 2009). Evidence for this mechanism in more
typical galaxies remains elusive.

Recently, Cheung et al. (2016) discovered a new class of
quiescent galaxies, referred to as “red geysers,” that show
distinctive emission-line patterns showing gas outflows from the
center and kinematic properties (explained in detail in
Section 3.1.1) that may signal AGN maintenance-mode feedback
in action. Based on spatially resolved information from the Sloan
Digital Sky Survey IV (SDSS-IV) Mapping Nearby Galaxies at
Apache Point Observatory (MaNGA) survey (Bundy et al. 2015),
this class of quiescent galaxies appears to host large-scale winds
of ionized gas that align with bisymmetric enhancements in the
spatial distribution of strong emission lines like Hα. Ionized
emission extends throughout the entire galaxy with line ratios
similar to low ionization emission region (LIER)–like galaxies
(Belfiore et al. 2016). In addition to their enhanced bisymmetric
line emission, the red geysers also exhibit gas kinematics
consistent with outflowing winds. The gradient of the gas velocity
field aligns with the position angle (PA) of the emission pattern
but is largely misaligned with the major or minor axes derived
from the stellar velocity field. The gas velocity values can reach
∼300 kms−1, a value that is difficult to explain by orbital motion
from the galaxy’s gravitational potential, considering the mass
range of the galaxies.

Early-type galaxies with accreted disks, as studied by Lagos
et al. (2015) and Chen et al. (2016), can show kinematic
features similar to those of red geysers, but those features are
formed due to a completely different phenomena. The accreted
gas coming in from random directions will gradually align

itself with either the major or minor axis through gravitational
torques generated by the galaxy’s potential well. Hence, while
a misalignment in the velocity gradient of stars and gas can
occur for these galaxies too, often the misalignment angle is
90° or 0°/180°, depending on whether a polar disk or
corotating/counterrotating disk is formed. Some galaxies with
accreted disks might show Hα equivalent width (EW)
distributions similar to those of red geysers. Cheung et al.
(2016) rejected the disk interpretation through detailed Jeans
anisotropic modeling (JAM; Cappellari 2008) of the proto-
typical red geyser with 99% confidence, which demonstrated
that the gas velocity in this source is too high (the difference
between the observed gas velocity and expected velocity from
modeling being ∼100 km s−1) to be described by the orbital
motion. Given similar high velocities and other common
features shared among all the red geysers, outflowing winds
emerge as a compelling interpretation (K. Bundy et al. 2018, in
preparation), making the question of whether AGNs are
capable of driving these winds particularly important.
A critical first step is to test the hypothesis that the red geyser

population is more likely to host an active AGN compared to
quiescent galaxies with similar global galaxy properties. For the
prototypical red geyser named “Akira,” Cheung et al. (2016)
showed that the host galaxy has a weakly and/or radiatively
inefficient supermassive black hole with a very low Eddington
ratio (λ= 3.9× 10−4), accreting mass from a low-mass compa-
nion galaxy. It was detected as a central radio point source.
The goal of this work is to search for radio-mode AGNs in

the entire red geyser sample. We analyze stacked radio flux
from the Very Large Array (VLA) Faint Images of the Radio
Sky at Twenty-Centimeters (FIRST) survey and find a higher
value of radio flux from the red geyser candidates than the
comparison sample of quiescent galaxies. We have excluded
possible star formation contamination and/or galaxies with
embedded disks from our sample by using optical and infrared
(IR) photometry. Section 2 describes the optical, IR, and radio
data that we have used in this work. In Section 3.1, we discuss
in detail the red geysers and the control sample chosen from the
MaNGA local quiescent population. The technical details of
radio-aperture photometry and the stacking analysis have been
narrated in Section 3.2. The results thus obtained from the
stacked radio flux are described in Section 4. The implications
of the results are given in Section 5.
Throughout this paper, we assume a flat cosmological model

with H0=70 km s−1 Mpc−1, Ωm=0.30, and ΩΛ=0.70, and
all magnitudes are given in the AB magnitude system.

2. Data

2.1. The MaNGA Survey

Our sample comes from the ongoing SDSS-IV MaNGA
survey (Bundy et al. 2015; Drory et al. 2015; Law et al. 2015;
SDSS Collaboration et al. 2017; Yan et al. 2016; Blanton et al.
2017). MaNGA is an integral field spectroscopic survey that
provides spatially resolved spectroscopy for nearby galaxies
(z∼ 0.03) with an effective spatial resolution of 2 5(FWHM).
The MaNGA survey uses the SDSS 2.5 m telescope in
spectroscopic mode (Gunn et al. 2006) and the two dual-
channel BOSS spectrographs (Smee et al. 2013) that provide
continuous-wavelength coverage from the near-UV to the near-
IR: 3600–10000Å. The spectral resolution varies from
R∼1400 at 4000Åto R∼2600 at 9000Å. An r-band
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signal-to-noise ratio (S/N) of 4–8Å−1 is achieved in the
outskirts (i.e., 1–2 Re) of the target galaxies with an integration
time of approximately 3 hr. MaNGA will observe roughly
10,000 galaxies with log(M*/Me)9 across ∼2700 deg2

over its 6yr duration. In order to balance radial coverage
versus spatial resolution, MaNGA observes two-thirds of its
galaxy sample to ∼1.5Re and one-third to 2.5Re. The
MaNGA target selection is described in detail in Wake et al.
(2017).

The raw data are processed with the MaNGA data reduction
pipeline (DRP; Law et al. 2016). An individual row-by-row
algorithm is used to extract the fiber flux and derive inverse
variance spectra from each exposure, which are then wave-
length calibrated, flat fielded, and sky subtracted. We use the
MaNGA sample and data products drawn from the MaNGA
Product Launch-5 (MPL-5) and Data Release 13. The data
products are identical to those released as part of the SDSS
Data Release 14 (DR14; Abolfathi et al. 2018). We use spectral
measurements and other analyses carried out by a preliminary
version of the MaNGA data analysis pipeline (DAP),
specifically version 2.0.2.22 In brief, the data we use here are
based on DAP analysis of each spaxel in the MaNGA data
cubes. The DAP first fits the stellar continuum of each spaxel to
determine the stellar kinematics using the penalized pixel-
fitting algorithm pPXF (Cappellari & Emsellem 2004;
Cappellari 2017) and templates based on the MILES stellar
library (Falcón-Barroso et al. 2011). The templates are a
hierarchically clustered distillation of the full MILES stellar
library into 49 templates. This small set of templates provides
statistically equivalent fits to those that use the full library of
985 spectra in the MILES stellar library. The emission-line
regions are masked during this fit. The DAP then subtracts the
result of the stellar continuum modeling to provide a (nearly)
continuum-free spectrum that is used to fit the nebular emission
lines. This version of the DAP treats each line independently,
fitting each for its flux, Doppler shift, and width, assuming a
Gaussian profile shape. This is different from the approach
used by the DAP for DR15, which is to tie the velocities of all
lines to a single value and to impose fixed flux ratios for the
[O I], [O III], and [N II] line doublets. A detailed comparison of
the results from the DR15 and MPL-5 versions of the DAP
show that the different approach taken by the latter and used for
our analysis has a negligible influence on our results. The final
output from the DAP are gas and stellar kinematics, emission-
line properties, and stellar absorption indices.

We use ancillary data drawn from the NASA-Sloan Atlas23

(NSA) catalog, which reanalyzes images and derives morpho-
logical parameters for local galaxies observed in SDSS
imaging. It compiles spectroscopic redshifts, UV photometry
(from GALEX; Martin et al. 2005), stellar masses, and
structural parameters. We have specifically used spectroscopic
redshifts and stellar masses from the NSA catalog.

2.2. The FIRST Survey

The radio data studied in this paper come from the VLA
FIRST (Becker et al. 1995) survey, which obtained data at

frequency channels centered at 1.36 and 1.4GHz over 10,000 deg2

in the north and south Galactic caps. The source detection
threshold is ∼1 mJy, corresponding to a source density of
∼90sourcesdeg−2. The FIRST images have 1 8 pixels with a
resolution of ∼5″ and typical rms of 0.15mJy. The astrometric
accuracy of each source is 0 5–1″ at the source detection
threshold. Since the FIRST survey area was designed to overlap
with the SDSS (York et al. 2000; Abazajian et al. 2009), most
MaNGA targets have FIRST data coverage. For our sample of
interest, 93% of the red geysers have FIRST coverage. However,
the 1 mJy threshold results in nondetections for most MaNGA
galaxies.
For each pointing center, there are 12 adjacent single-field

pointings that are coadded to produce the final FIRST image.
Sources are extracted from the coadded reduced images and fit
by two-dimensional Gaussians to derive peak flux, integrated
flux densities, and size information. The current FIRST catalog
is accessible from the FIRST search page.24

2.3. SDSS+WISE SFRs

In order to assess possible contamination from obscured star
formation, we have used the Chang et al. (2015) catalog to
obtain IR-based star formation rates (SFRs). The catalog
contains 858,365 galaxies within the SDSS spectroscopic
sample as compiled in the New York University Value-added
Galaxy Catalog (NYU-VAGC; Blanton et al. 2005; Adelman-
McCarthy et al. 2008; Padmanabhan et al. 2008) and cross-
matched with the AllWISE source catalog from the Wide-field
Infrared Survey Explorer (WISE). Unlike optical emission-line
SFR estimates, Chang et al. (2015) utilized mid-IR data from
full WISE photometry and employed a spectral energy
distribution (SED) fitting technique to estimate stellar mass
and SFR. Their modeling is based on the MAGPHYS library25

(MAGPHYS contains 50,000 stellar population template
spectra and 50,000 PAH+ dust emission template spectra)
and is applied to all z<0.2 galaxies with good WISE
photometry (FLAG_W=1 or 2) and good-quality SED fits
(FLAG_CHI2=1). None of the objects in our sample feature
AGN-like WISE colors; hence, it is unlikely that AGN
contamination may be significantly biasing the SED-based
SFR estimates. We have used the public Chang et al. (2015)
catalogs.26 Details are given in Chang et al. (2015).

3. Method

The identification of red geysers is based on the optical
resolved spectroscopic data from MaNGA. Section 3.1.1
describes the conditions and criteria that have been used to
select our sample. Matched control sample galaxies have been
selected from the full galaxy sample via the method discussed
in Section 3.1.2. A third category of galaxies, which we call the
“Hα-disturbed” class, as described in detail in Section 3.1.3,
consists of galaxies that are not classified as geysers due to the
absence of the characteristic bisymmetric pattern in the
resolved optical emission map, but they show kinematic and
emission-line properties that are quite different from those of
typical quiescent galaxies. They have distinct regions of
enhancement in the Hα–EW map, along with highly spatially22 This version of the code will be made public in the upcoming SDSS Data

Release 15 (DR15; Aguado et al. 2019, submitted). An overview of the DAP
used for the DR15 and its products is described by K. Westfall et al. (2018, in
preparation), and assessments of its emission-line fitting approach are described
by F. Belfiore et al. (2018, in preparation).
23 http://www.nsatlas.org

24 http://sundog.stsci.edu/cgi-bin/searchfirst. The full images are available at
ftp://archive.stsci.edu/pub/vla_first/data.
25 http://www.iap.fr/magphys/
26 http://irfu.cea.fr/Pisp/yu-yen.chang/sw.html
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resolved gas velocity values in comparison to stellar velocity.
The Hα-disturbed class forms a separate category, distinct from
both the red geyser and control samples. We perform aperture
photometry (described in detail in Section 3.2) on the FIRST
radio cutouts for all galaxies using an aperture size of 10″
diameter to obtain the radio flux values and associated
photometric errors. The galaxies that satisfy the condition
S/N>3 are classified as radio-detected with a confidence
level of 3σ. Since the detection threshold of the VLA FIRST
survey is shallow (∼1 mJy), many galaxies might lie below the
sensitivity limit. Section 3.2 describes the stacking analysis that
allows us to constrain the average radio flux for samples of
galaxies that are undetected individually. The median-stacked
FIRST images for our sample provide a greater S/N with a
typical rms of ≈10 μJy.

3.1. Sample Selection

In this section, we describe the identification of red geysers,
selection of matched control sample galaxies, and characterization
of the Hα-disturbed galaxies.

3.1.1. Red Geysers

Red geysers are visually selected based on their character-
istic features, as described in Cheung et al. (2016). Red geysers
are red galaxies defined by rest-frame color NUV−r>5
(Figure 2). The specified UV–optical color cut selects
predominantly quiescent galaxies (Salim et al. 2005, 2007,
2009). In MPL-5, 40% of all targets fall in the quiescent
category by the specific color cut. The SFR estimates derived
from full SED fitting from optical to mid-IR data (Chang et al.
2015) are small for the red geysers (96% of the sample has log
SFR [Me yr−1]<−2, shown later in Figure 8) to ensure
quiescence and remove possible obscured star formation.
Additionally, the spatially resolved map of the EW of the
Dn4000 absorption feature is high, roughly >1.4Å, thus
ensuring the absence of young stars in the galaxy. The red
geysers show narrow bisymmetric patterns in the ionized gas
emission as observed in the EW maps of strong emission lines
like Hα and [O III]. These patterns line up approximately with
the gaseous kinematic axis and show a misalignment with the
stellar kinematic axis, but we pay close attention to cases where
the misalignment of the stellar and gas velocity field is 0°,
180°, or 90° in order to exclude embedded corotating,
counterrotating, and polar gas disks. Another important
defining property of the red geysers is that they have highly
spatially resolved gas velocities that can reach a maximum
value of ∼250–300 km s−1, much higher compared to stellar
velocities, as well as high gas velocity dispersion values
(maximum ∼200 km s−1). Hence, the observed second moment
of the velocity ( sº +V Vrms

2 2 ) of the ionized gas typically
exceeds the second-velocity moments of the stars by
80–100km s−1, suggesting that the ionized gas kinematics in
these galaxies cannot be explained by gravitationally bound
orbits alone. For the prototype red geyser, Cheung et al. (2016)
performed detailed JAM and used the dynamically constrained
potential to get a rough estimate of the escape velocity,
Vesc∼400±50km s−1. They found that roughly 15%–20%
of the gas would exceed the escape velocity. A typical example
of a red geyser is shown in Figure 1. Further details of the
selection procedure will be described in K. Bundy at al. (in
preparation).

Accreted gas disks in early-type galaxies (e.g., Chen et al.
2016) can sometimes produce similar gas velocity gradients
like the red geysers due to rotation of the gaseous material in
the disk. A few edge-on disks show a bisymmetric pattern in
the EW map similar to the red geysers. Hence, we include a
few steps in our visual identification to exclude galaxies with a
visible disk component or dust lanes apparent in the optical
SDSS image. We discard edge-on galaxies with axis ratio
b/a<0.3. We also checked the galaxy specific stellar angular
momentum (λRe) and ellipticity (ò) from the extensive catalog
in Graham et al. (2018). Convincingly, we find that 95% of the
red geysers are fast-rotator early-type galaxies. Our control
sample galaxies are of a similar nature; 97% of them are fast
rotators, according to Graham et al. (2018). Since the fast
rotators have stellar disks and are axisymmetric, this implies
that a gas disk cannot be in equilibrium if it is misaligned with
the stellar kinematic PA, thus ruling out the possibility of disks
being the source of the observed misalignment in the red
geysers. Additionally, to avoid galaxies with rotating disks
being included in the red geyser sample, any galaxy showing a
very low value of average gas velocity dispersion through out
the galaxy (<60 km s−1, which is roughly the average
dispersion value observed in polar disks), has been discarded
from our red geyser sample completely, even if it shows other
convincing features of a red geyser.
As described in Cheung et al. (2016), the gas velocity fields

of the red geysers are poorly fit by flexible disk rotation
models. The error-weighted average residual, characterizing the
goodness of fit, places the red geysers among the worst 5% of
fitted MaNGA galaxies with disklike kinematics. The resolved
spectral-line ratios land predominantly in the LINER region in
the Baldwin, Phillips & Telervich (BPT) diagram, predicting
that the ionizing source is mostly post–asymptotic giant branch
(AGB) stars and/or AGNs.
To summarize, the red geysers in our chosen sample have the

following characteristic features.

1. Quiescent nature with rest-frame color NUV−r>5.
2. Bisymmetric emission feature in the Hα–EW

resolved map.
3. Rough alignment of the bisymmetric feature with the

ionized gas kinematic axis but misalignment with the
stellar kinematic axis.

4. High spatially resolved gas velocity values, typically
reaching a maximum of ±300km s−1, which are greater
than the stellar velocity values by at least a few factors.

5. Very low SFR, with a typical value of log SFR
[Me yr−1]<−2.

Currently, our sample has 84 red geysers, which account for
≈8% of quiescent MaNGA galaxies (defined as NUV−r> 5;
see Section 3.1.2).

3.1.2. Control Sample

We create a control sample of quiescent galaxies with
- >rNUV 5 (shown in Figure 2), which are matched in

global properties but do not show the resolved geyser-like
features described in Section 3.1.1.
For each red geyser, we match up to five unique quiescent

galaxies with the following criteria:

1. * * <∣ ∣M Mlog 0.2, red geyser , control dex,
2. - <∣ ∣z z 0.01red geyser control , and
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Figure 1. Typical red geyser included in our sample. The data have been obtained from MaNGA integral field spectroscopic observations. The panel in the center
shows the optical image of the galaxy (MaNGA-ID: 1-634825). The magenta hexagon marked in the image is the extent of the MaNGA fiber bundle. In the other
panels, as labeled, we have shown the Hα flux map, EW map, Dn4000 absorption map, and velocity maps of the gas and stars along with their dispersion. As
described in Section 3.1.1, this galaxy satisfies all the conditions that we use to classify an object as a red geyser. Especially notable is the bisymmetric pattern in the
EW map of Hα, and the kinematic axis aligns perfectly with the gas velocity field.

Figure 2. Rest-frame NUV−r color vs. stellar mass ( *Mlog ) diagram of the MaNGA sample, with the red geysers in red circles and the control galaxies in green
squares. Quiescent galaxies are clustered in the upper part of the NUV−r distribution; we define NUV−r>5 as a conservative boundary of quiescent galaxies.
Galaxies with NUV−r>8 are undetected in the NUV data.
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3. - <∣ ∣b a b a 0.1red geyser control ,

where M* is the stellar mass, z is the spectroscopic redshift,
and b/a is the axis ratio from the NSA catalog. Stellar mass and
redshift have been shown to correlate with radio emission and
thus must be controlled for (e.g., Condon 1984; Dunlop &
Peacock 1990; Best et al. 2005). We also control for axis ratio
so that we do not compare potentially dust-reddened edge-on
galaxies with the relatively face-on red geyser galaxies. This
matching technique results in 260 unique control galaxies.
Figure 3 shows an example of a typical quiescent galaxy from
the control sample.

Figure 4 compares the global galaxy properties of the control
sample and the red geysers. The red geysers (red) and control
sample (blue) are well-matched in all four parameters—stellar
mass, redshift, color, and axis ratio—as expected.

3.1.3. Hα-disturbed Galaxies

During the course of visual inspection, we discovered
another category of galaxies that we will hereby refer to as
“Hα-disturbed.” Figure 5 shows an example. The gas content
of these galaxies is comparable to that of the red geysers
(median Hα EW value >0.5Å, similar to ∼0.8Å in the red
geysers), but the Hα EW maps do not show the clear

bisymmetric patterns of a red geyser. They show twisted,
disturbed Hα EW maps, sometimes with individual blobs of
gas that are found throughout the galaxy. Of the total sample,
90% has spatially resolved gas velocity values reaching a
maximum of ∼250km s−1, which is high compared to the
stellar velocities that lie within ±60km s−1. Some of them
have high gas velocity dispersion, upward of ∼200kms−1, as
seen in the red geyser population. We found 60 such Hα-
disturbed candidates from ∼900 MaNGA quiescent popula-
tions, and we treat them as a separate third category different
from both the red geyser and control samples.

3.2. FIRST Radio Photometry and Stacking

To obtain the radio flux, we perform aperture photometry on
the FIRST cutouts for 78 out of 84 red geysers, 260 control
galaxies, and 57 out of 60 Hα-disturbed galaxies that have
FIRST coverage. We first determine which FIRST tile (of
dimension 34 5×46 5) a specific galaxy falls on. If a galaxy
is located too close to the FIRST tile edge (less than 10″), that
galaxy is discarded. We extract a small cutout, 50×50 pixels
wide (each pixel is 1 8), centered on the galaxy of interest. We
use a circular aperture of 10″ diameter centered on the galaxy
and sum the radio flux values within. For our target galaxies,
which are located roughly at redshift ∼0.03, the 10″ aperture

Figure 3. Typical control galaxy chosen in our sample. The data have been obtained from MaNGA integral field spectroscopic observations. The panel in the center
shows the optical image of the galaxy (MaNGA-ID: 1-24099). The magenta hexagon marked in the image is the extent of the MaNGA fiber bundle. In the other
panels, as labeled, we show the Hα flux map, EW map, Dn4000 absorption map, and velocity maps of the gas and stars along with their dispersion. As described in
Section 3.1.2, this galaxy is red with NUV−r>5, has a very low value of star formation, and is relatively face-on with b/a>0.3. This galaxy is clearly not a red
geyser, as it does not satisfy any of the red geyser features described in Section 3.1.1, so it can safely be included in the control sample.
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corresponds to 6 kpc on the sky and hence is a reasonable
choice for aperture size. We have defined the criteria for radio
detection to be S/N>3. We then perform a median stack of
the FIRST images associated with the three samples described
in Section 3.1. To ensure that our results are not biased by a
few radio-bright sources, we have made separate stacks of radio
flux with the individually radio-detected sources removed.

We have also tested that our stacked radio signal is not an
artifact of faulty FIRST tiles by median stacking random
cutouts within a radius of 75″ in the same FIRST tile where the
galaxy is located. We would expect these “blank” stacks to
have pure white noise with no radio signal.

Figure 6 shows the images of the median-stacked flux of
these four samples: (1) the red geysers, (2) the control sample,
(3) the non-radio-detected red geysers, and (4) the non-radio-
detected control sample. The rightmost panel in both rows
shows the blank stacks. Reassuringly, the blank stacks show no
signal.

We perform additional separate stacks, controlling for
ionized gas content and SFR in the control galaxies, to see
their effect on the radio output. Details of our findings are given
in Section 4.

In order to account for the photometric error, as well as the
systematic error due to sample construction, we perform a

bootstrap analysis on all of our samples. We construct 1000
random samples with replacement with the same size as each
sample and compute the stacked radio flux as before. We take
the standard deviation of the resulting flux distributions (σ) to
be the estimate of the error on the stacked flux measurements.

4. Results

4.1. Radio Detection of Red Geysers versus Control Sample

We have cross-matched FIRST radio detections with our
sample of red geysers and control galaxies. Out of 78 red
geysers, 12 ± 3 (∼15% ± 4%) are found to be radio-detected,
where the quoted errors are obtained from standard Poisson
statistics. Among the control sample, 14±4 out of 260 are
radio-detected, with a detection fraction of ∼5%±1.5%. Red
geysers show a three times higher radio detection rate
compared to our control sample with a significance level of
5σ. We also find that the radio-detected red geysers make up an
appreciable fraction (∼10%) of the red MaNGA galaxies that
are radio-detected by the FIRST survey. This fraction increases
to ∼20% when the Hα-disturbed category galaxies are
included along with the red geyser population. If we limit
our sample to log(Må/Me)<11, the detection rate of red
geysers and Hα-disturbed galaxies goes up to 40%.

Figure 4. Comparison of global properties of red geysers with our chosen control sample. Normalized histograms of red geysers and control galaxies are shown in
stellar mass ( *Mlog ), rest-frame NUV−r color, redshift (z), and axis ratio (b/a). The red geyser sample distribution is shown in red, while the control sample
properties are shown in blue. We see a similar distribution for red geysers and control sample properties, as expected from our method of selection of the control
sample.
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4.2. Stacked Radio Activity of Red Geysers
versus the Control Sample

Figure 7 shows the first main result of our analysis. We
compare the median-stacked radio fluxes of the red geysers (red
circles) with those of the control sample (blue squares). Data
points on the side marked “All” indicate the median fluxes
when the entire sample of geysers and control samples is
included in the stack. On the side labeled “Radio Nondetec-
tions,” we have excluded radio-bright red geysers and control
galaxies. We see that for both cases, the red geyser radio fluxes
obtained from median stacking are three times higher than the
control sample at greater than 99.99% confidence (>5σ).

We additionally control for the presence of ionized gas in
our sample. We obtain Hα EW measurements from the
MaNGA DAP. The mean value obtained by averaging the EW
(Hα) values of all spaxels in a particular galaxy within 1.5
effective radii is used as the mean EW value and a proxy for
ionized gas content. The control galaxies show an average
value of 0.3Å, somewhat lower than the corresponding 0.8Å
seen in the red geyser sample. To compare against galaxies
with similar EW values, we select an additional control sample
with EW>0.5Å (yellow diamonds). We see that even the
radio stack of control galaxies having a comparable level of

ionized gas has a value about three times less than that of the
red geyser stack. In addition to that, the stacked radio flux for
the control galaxies with ionized gas does not show much
difference for the “All” and “Radio Nondetections” samples,
which implies that the presence of a higher amount of ionized
gas in the control sample does not necessarily affect the radio
detection rate.
The detailed implications of these findings are summarized

in Section 5.

4.3. Dusty Star Formation

As described in Section 3.1.1, we set a color cut of
rest-frame NUV−r>5 and exclude edge-on galaxies with
b/a<0.3 to avoid possible radio contamination by star
formation to the radio flux. However, UV wavelengths are
susceptible to dust attenuation and may not reveal heavily
obscured star formation (e.g., Calzetti 2001). Here we use the
SDSS+WISE Chang et al. (2015) catalog for obtaining SFR
based on IR fluxes that are sensitive to dusty star formation.
Chang et al. (2015) utilized the full WISE photometry to model
the SED in the optical through mid-IR bands and obtained
updated measures of mass and SFR.

Figure 5. Typical disturbed galaxy as described in Section 3.1.3. The data have been obtained from MaNGA integral field spectroscopic observations. The panel in the
center shows the optical image of the galaxy (MaNGA-ID: 1-43933). The magenta hexagon marked in the image is the extent of the MaNGA fiber bundle. In the other
panels, as labeled, we have shown the Hα flux map, EW map, Dn4000 absorption map, and velocity maps of the gas and stars along with their dispersion. As
described in Section 3.1.3, this galaxy cannot be called a promising geyser candidate because of the lack of the signature bisymmetric pattern, but the kinematics
indicate a difference from the ordinary control sample. It has been classified as a third “Hα-disturbed” category to separate it from the geyser and the control sample
population.
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Figure 8 shows the log SFR versus log Må diagram of
the galaxies from the Chang et al. (2015) catalog. We see
that the majority of red geyser and control galaxies lie in the

non-star-forming region, with low values of SFR. To ensure
that our result is not affected by radio contamination from
dusty star formation, we have redone the stacking analysis after

Figure 6. Median-stacked images of red geysers (top panels) and the control sample (bottom panels). The middle panels show the non-radio-detected stacked images
for the red geysers (top) and the control (bottom), where all radio-detected sources have been excluded. The blank stacks are shown in the top right and bottom right
panels.

Figure 7. Median-stacked radio flux obtained from the stacked sample of red geysers (red circles) and the control sample (blue squares). “All” represents the stacks
where the entire sample has been included for both red geysers and control, while “Radio Nondetections” indicates the stacks where the individually radio-detected
sources have been removed. The condition of radio detection of a source has been defined as S/N>3. “Control with ionized gas,” marked with yellow diamonds,
shows a specific subset of control galaxies when we additionally controlled for ionized gas (described in detail in Section 4). The red geyser sample shows an
enhanced radio flux compared to the control sample galaxies, and the presence of a higher amount of ionized gas in the control sample does not necessarily affect the
radio detection rate. The spaxel-by-spaxel EW information has been obtained from the MaNGA DAP and averaged over the spatial extent of 1.5 effective radii to
obtain the mean EW value for a particular galaxy.
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excluding galaxies that have log SFR[Me yr−1]>−2. This
cut removes three red geysers and 30 control sample galaxies.
Figure 9 shows the median-stacked radio flux in the region
labeled “Non-star-forming.” We conclude that our results are
not affected by contamination from dusty star formation.

WISE colors can be used to detect strong nuclear heating
associated with bright AGNs or quasars at the center of the host
galaxy. According to Yan et al. (2013), W1(3.4 μm)−
W2(4.6 μm)>0.8 presents an efficient mid-IR color-based
selection criterion for luminous AGNs and quasars. Most of the
red geysers and control sample have 0.6<W1−W2<0.7,
with very few (one or two) having a value >0.8. This lends

confidence to the ability of the WISE data to constrain obscured
star formation in these galaxies, as there is no AGN
contamination present in the SEDs of these galaxies. We trust
the SED-based SFRs from Chang et al. (2015).

4.4. Stacked Flux of the Hα-disturbed Category

In Figure 9, the stacked flux for the galaxies in the disturbed
category is shown with green stars. Remarkably, these galaxies
show a slightly higher value of median-stacked radio flux than
the red geysers. The disturbed EW maps and high gas velocity
dispersions revealed by MaNGA data correlate with enhanced

Figure 8. The log SFR vs. log Må as obtained from the SDSS+WISE catalog of Chang et al. (2015). The gray 2D histogram shows all the galaxies in the catalog with
0.01<z<0.1. The red circles and blue stars signify red geyser and control sample galaxies, respectively. Most of the galaxies in our chosen sample have a low log
SFR value, <−2 Me yr–1.

Figure 9.Median-stacked radio flux obtained from the stacked sample of red geysers (red), Hα-disturbed galaxies (green), and the control sample (blue). The leftmost
region shows the stacks for the entire sample of red geysers (red circle), the control sample (blue square), and the Hα-disturbed category (green star). The “Radio
Nondetections” region shows the stacked radio flux for the geysers and the control sample where the individually radio-bright ones, satisfying the criteria S/N>3,
have been removed. The red geyser and the control sample have been cross-matched with the SDSS+WISE catalog of Chang et al. (2015). Galaxies with
logSFR>−2Me yr−1 have been removed and restacked. They constitute the “Non-star-forming” category shown in the rightmost region of the plot. In all cases, the
median-stacked radio flux is higher for the red geyser sample compared to the control sample by >5σ.
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radio flux. We will discuss the implication of this finding in
Section 5.

5. Discussions and Conclusion

We have performed a radio-stacking analysis of 78 red
geysers selected from the MaNGA survey that have FIRST
coverage and compared their median radio flux with a sample
of quiescent galaxies matched in global integrated properties
but not classified as red geysers. The red geyser galaxies show
significantly higher radio fluxes than the control galaxies,
despite the fact that the red geyser selection is based on optical
data alone. This suggests a physical link between the optical
features that identify red geysers and the presence of enhanced
AGN activity, lending further support to the argument that
AGN-driven winds are responsible.

We have made several subdivisions based on different
physical criteria to check our results.

1. We have performed the stacking for all galaxies in both
the red geyser and control samples.

2. We have performed the stacking for samples in which the
radio-detected sources are removed so that a few bright
sources do not dominate the median-stacked radio flux
value.

3. We have performed the stacking for galaxies with similar
levels of ionized gas by imposing a cut on EW (Hα)
value.

4. We have performed the stacking for samples that exclude
galaxies that show a high value of star formation from
SDSS+WISE.

In all cases, red geysers exhibit elevated radio flux values.
Given our conservative NUV−r color cut, the use of WISE

mid-IR data (Section 4.3), and the absence of star-forming H II
regions from resolved BPT diagrams, we can rule out star
formation as the explanation for this enhanced radio flux. The
other most likely sources are AGN activity or supernova
remnants. SN Ia remnants can induce radio synchrotron
emission from shock-accelerated cosmic rays. However, in
our case, they are unlikely to be responsible for the increased
radio signal in the red geyser sample because our selection
criteria do not involve any factors that may enhance or suppress
the SN Ia rate. We have controlled primarily for the M*, rest-
frame NUV−r color, and age of the galaxy. Thus, there
should be no difference in the frequency of SN Ia remnants
between the red geysers and the control sample.

We conclude that the enhanced radio emission of red geysers
is due to the presence of radio-mode AGNs. To confirm this
statement, we compare the expected SFR from the average
radio luminosity from the entire red geyser sample with the
observed SFR derived from full SED fitting of optical mid-IR
data from the Chang et al. (2015) catalog. The mean radio
luminosity density (L1.4 GHz) obtained from the stacked
integrated flux density is L1.4 GHz∼2×1021WHz−1

(obtained by averaging the values of the radio luminosity of
the red geysers in two mass bins, shown by black stars in
Figure 10). From the best-fit relation between 1.4 GHz radio
continuum luminosity and the Balmer decrement–corrected Hα
(Brown et al. 2017), we obtain a corresponding Hα luminosity
of ∼1.3×1041ergs−1. Using the known relation between
SFR and Hα luminosity (Kennicutt et al. 2009; Brown et al.
2017), assuming a Kroupa initial mass function (Kroupa &
Weidner 2003), we obtain an expected SFR from this radio

emission of ∼1Meyr
−1. However, the observed mean SFR

from the sample, as shown in Figure 8, is ∼10−3Meyr
−1,

which is much lower than expected, thus confirming AGNs as
the primary source of radio emission, rather than star formation
in the red geysers. The AGN feedback can induce radio emission
through radio jets (Zensus 1997; Falcke & Biermann 1999),
advection-dominated accretion flows (Narayan et al. 1995,
2000), and/or winds (Jiang et al. 2010).
It stands to reason that the AGNs in the red geysers may act

as the central powerhouse driving the ionized gas winds that
signal the red geyser phenomenon.
It is interesting to consider how the Hα-disturbed galaxies fit

in this context. These galaxies show a comparable (within the
uncertainty) or slightly higher value of stacked radio flux
compared to the red geysers. All of them show significant gas
blobs in the Hα EW maps. Some of them can be potential
geyser candidates or relics from mergers or tidal interactions
with other galaxies. The complex gas morphology might be a
product of a multiphase and clumpy ISM ionized by the central
AGN. These blobs may form out of the geyser wind material
after the central engine shuts down. They may also result from
a less stable accreting source. Given the uncollimated and
chaotic distribution of ionized gas, it seems unlikely that the
cool inflowing of material from a galactic encounter is
responsible. There is also no indication that the Hα-disturbed
galaxies have recently undergone a merger or interaction.
Clearly, more work is needed to understand them.
We would also like to highlight the handful of control

galaxies with clear radio detections that are not classified as red
geysers or Hα-disturbed. These galaxies likely host a central
active nucleus and exhibit significant emission-line flux. They
may mean any of the following.

1. Our red geyser sample based on visual inspection is not a
complete sample of AGN-driven ionized winds. Red
geysers may be a special type of AGN wind
phenomenon.

2. The AGNs in the control sample are too weak to drive out
sufficient gas for detection at large radii.

3. A time lag may exist between AGN triggering and the
development of a large-scale wind. Those AGN-hosted
control galaxies may not be in the red geyser phase at the
current epoch but may have passed through this phase in
the past or might in the future.

Figure 10 shows the variation of radio luminosity (L1.4 GHz)
with stellar mass (Må) for all FIRST radio-detected quiescent
galaxies in the MaNGA sample. We see that the radio AGN
population occupies two distinct regions in the plot, depending
on the properties of the host quiescent galaxies. Radio AGNs in
the galaxies showing optical emission-line features (red
geysers and Hα-disturbed galaxies) are found mostly at
log(Må/Me)<11 (the low-mass end of the typical quiescent
galaxy population), while the radio detection rate overall is
higher for log(Må/Me)>11 by almost a factor of 1.4
compared to the lower-mass galaxies. One possibility is that
red geysers and “radio galaxies” represent different AGN
populations with different associated accretion histories and
fueling mechanisms. Alternatively, the declining presence of
wide-scale ionized gas at a higher stellar mass (Belfiore et al.
2017) may simply hide the existence of AGN-driven winds at
higher masses.
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We can gain further insight by considering the average
luminosities from our stacked samples in two stellar mass bins.
Using the median redshift in each mass bin, we overplot the
average luminosity of red geysers and Hα-disturbed galaxies in
Figure 10 (shown with black stars and diamonds, respectively).
The average luminosity has been obtained from the stacked radio
flux that includes both radio-detected and nondetected sources.
While radio-detected sources show a strong mass dependence, the
average radio luminosity associated with red geysers shows a
slightly weaker dependence with stellar mass. This suggests that a
different kind of accretion physics may be at play.

Considering the two red geyser mass bins in Figure 10, we see
that the typical radio power of the red geysers is ∼1021WHz−1

(shown in Figure 10 by black stars). From the best-fit linear
relation between jet mechanical energy and radio power from
Heckman & Best (2014), we get an estimate of the jet kinetic
energy to be 3×1041 erg s−1. The AGNs in the red geysers are
low-luminosity sources, and their mechanical energy will be
confined predominantly to the size scales of the host galaxy halo.
Also, according to our interpretation, the short-lived geyser phase
possibly occurs in any red-sequence galaxy; hence, the “duty
cycle” represents the number of galaxies with an active red geyser
phase in the present. Hence, if we assume that the observed
fraction of red geysers represents their duty cycle, then these
phenomena are present 10% of the time (higher, if we consider
log (Må/Me)<11). Multiplying this duty cycle by the typical jet
kinetic power yields ∼3×1040 erg s−1, an estimate of the AGN
power averaged over long timescales. We can compare this to the
cooling rate implied from the X-ray gas in this stellar mass range
(O’Sullivan et al. 2001; Best et al. 2006), which is similar,
∼1040 erg s−1. This similarity provides further evidence that red
geysers may play an energetically interesting role in the
suppression of gas cooling and star formation at late times.
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Figure 10. The 1.4 GHz radio luminosity vs. stellar mass of radio-detected red geysers (red circles), Hα-disturbed galaxies (green squares), and red (NUV−r > 5)
MaNGA galaxies (gray circles). This plot shows that the radio AGN population occupies two distinct regions in the luminosity stellar mass space, depending on the
types of host quiescent galaxies. The lower-mass regime (log Må < 11) is occupied by quiescent galaxies with optical emission-line features (red geysers and Hα-
disturbed galaxies), while in the higher-mass region, we mainly find galaxies without detectable emission-line features (similar to our control sample). The black stars
and diamonds show the stacked radio luminosities from the entire sample (which includes both radio-detected and nondetected ones) of red geyser and Hα-disturbed
galaxies, respectively, in two mass bins.
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