9 research outputs found

    Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial

    No full text
    In this study, nanocomposite collagen scaffolds incorporating gold nanoparticles (AuNPs) were prepared for wound healing applications. Initially, dose (20nm) of AuNPs that were not cytotoxic on HaCat keratinocytes and 3T3 fibroblasts were determined. Both collagen sponges and AuNP-incorporated nanocomposites (CS-Au) were cross-linked with glutaraldehyde (CS-X and CS-AuX). Incorporation of AuNPs into cross-linked scaffolds enhanced their stability against enzymatic degradation and increased the tensile strength. Hydrolytic degradation of CS-Au group was also less than CS after seven days. Upon confirming in vitro biocompatibility of the scaffolds with cytotoxicity assays, cell attachment and proliferation tests and the in vivo efficacy for healing of full-thickness skin wounds were investigated by applying CS-X, CS-AuX or a commercial product (Matriderm (R)) onto defect sites and covering with Ioban (R) drapes. Defects were covered only with drapes for untreated control group. The wound areas were examined with histopathological and biomechanical tests after 14 days of operation. CS-AuX group was superior to untreated control and Matriderm (R); it suppressed the inflammation while significantly promoting granulation tissue formation. Inflammatory reaction against CS-AuX was milder than CS-X. Neovascularization was also higher in CS-AuX than other groups, though the result was not significant. Wound closure in CS-X (76%), CS-AuX (69%), and Matriderm (R) (65%) were better than untreated control (45%). CS-AuX group had the highest tensile strength (significantly higher than Matriderm (R)) and modulus (significantly higher than Matriderm (R) and CS-X), indicating a faster course of dermal healing. Further studies are also needed to investigate whether higher loading of AuNPs affects these results positively in a statistically meaningful manner. Overall, their contribution to the enhancement of degradation profiles and mechanical properties, their excellent invitro biocompatibility, and tendency to accelerate wound healing are encouraging the use of AuNPs in collagen sponges as potent skin substitutes in the future

    Wet electrospun silk fibroin/gold nanoparticle 3D matrices for wound healing applications

    No full text
    WOS: 000369546100056This study aimed to fabricate 3D silk fibroin (SF) matrices for skin tissue engineering applications. SF/poly(ethylene oxide) solutions were wet electrospun to obtain a fibrous network (0.7-20 mm diameter), which were then lyophilized to obtain 3D porous nanofibrous matrices (SFM-E: ethanol treated silk fibroin matrices). SF matrices were loaded with citrate-capped gold nanoparticles (AuNPs, 14.27 ppm, D-average = 24 nm) (SFM-AuE: ethanol treated silk fibroin matrices incorporated with AuNPs) and investigated for structural and chemical properties, in vitro biocompatibility and in vivo full-thickness dermal wound healing efficacy in a rat model. AuNP incorporation enhanced the degradation profiles and mechanical properties significantly. SFM-E and SFM-AuE showed similar cell attachment and layer by layer proliferation behaviour, but cells had more spread and flattened morphology on SFM-AuE. Both matrix extracts had high cell viability (>90%), indicating good in vitro biocompatibility. Wound closure was statistically more than the untreated skin control (UTSC) in SFM-E and SFM-AuE applied groups. The recovered tensile strength and elastic modulus of SFM-E and SFM-AuE (40-60%) were not as high as the unwounded skin control (UWSC), but they had elongation at break values similar to UWSC. This was attributed to the still ongoing medium to high inflammation levels leading to a low and immature extent of collagen fibrils on postoperative 14th day. There was only a small amount of epithelialization due to scab formation and medium to high level inflammation for both SFM-E and SFM-AuE, but they were better than UTSC in terms of neovascularization and granulation tissue formation. As a whole, inclusion of AuNPs to SF matrices at 14.27 ppm loading brought some enhancement in the matrix properties and did not cause any toxicity in in vitro and in vivo conditions and even had potency to promote wound healing stages.Scientific and Technological Research Council of Turkey, TUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [2120189]This investigation was financially supported by the Scientific and Technological Research Council of Turkey, TUBITAK (Project no. 2120189) in the framework of 1512-Entrepreneurship and Multistep R&D Funding Program. The commercialization potential of the SF matrices developed here was also investigated with the cooperation of METU and Remoderm Medical Ltd. Co. The authors express their gratitude to Tufan Emiroglu for his helps in construction of wet electrospinning system and Dr Temel Bilici for his valuable advices in the design of SF matrices. The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article
    corecore