577 research outputs found

    Quantum preparation uncertainty and lack of information

    Get PDF
    The quantum uncertainty principle famously predicts that there exist measurements that are inherently incompatible, in the sense that their outcomes cannot be predicted simultaneously. In contrast, no such uncertainty exists in the classical domain, where all uncertainty results from ignorance about the exact state of the physical system. Here, we critically examine the concept of preparation uncertainty and ask whether similarly in the quantum regime, some of the uncertainty that we observe can actually also be understood as a lack of information (LOI), albeit a lack of quantum information. We answer this question affirmatively by showing that for the well known measurements employed in BB84 quantum key distribution, the amount of uncertainty can indeed be related to the amount of available information about additional registers determining the choice of the measurement. We proceed to show that also for other measurements the amount of uncertainty is in part connected to a LOI. Finally, we discuss the conceptual implications of our observation to the security of cryptographic protocols that make use of BB84 states.Comment: 7+15 pages, 4 figures. v2: expanded "Discussion" section, "Methods" section moved before "Results" section, published versio

    Biased Random Access Codes

    Full text link
    A Random Access Code (RAC) is a communication task in which the sender encodes a random message into a shorter one to be decoded by the receiver so that a randomly chosen character of the original message is recovered with some probability. Both the message and the character to be recovered are assumed to be uniformly distributed. In this paper, we extend this protocol by allowing more general distributions of these inputs, which alters the encoding and decoding strategies optimizing the protocol performance, either with classical or quantum resources. We approach the problem of optimizing the performance of these biased RACs with both numerical and analytical tools. On the numerical front, we present algorithms that allow a numerical evaluation of the optimal performance over both classical and quantum strategies and provide a Python package designed to implement them, called RAC-tools. We then use this numerical tool to investigate single-parameter families of biased RACs in the n21n^2 \mapsto 1 and 2d12^d \mapsto 1 scenarios. For RACs in the n21n^2 \mapsto 1 scenario, we derive a general upper bound for the cases in which the inputs are not correlated, which coincides with the quantum value for n=2n=2 and, in some cases for n=3n=3. Moreover, it is shown that attaining this upper bound self-tests pairs or triples of rank-1 projective measurements, respectively. An analogous upper bound is derived for the value of RACs in the 2d12^d \mapsto 1 scenario which is shown to be always attainable using mutually unbiased measurements if the distribution of input strings is unbiased

    Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

    Get PDF
    Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well-dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well-dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show changes in both the regional pollen signal as well as local soil sediment characteristics match shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late-3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid-7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid-10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid-12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes in land use during Ottoman times. The pollen data reveal that a fast rise in <i>Pinus</i> pollen after the end of the Beyşehir Occupation Phase need not always occur. The notion of high <i>Pinus</i> pollen percentages indicating an open landscape incapable of countering the influx of pine pollen is also deemed unrealistic. While multiple fires occurred in the region through time, extended fire periods, as had occurred during the Bronze Age and Beyşehir Occupation Phase, did not occur, and no signs of local fire activity were observed. Fires were never a major influence on vegetation dynamics. While no complete overview of post-BO Phase fire events can be presented, the available data indicates that fires in the vicinity of Gravgaz may have been linked to anthropogenic activity in the wider surroundings of the marsh. Fires in the vicinity of Bereket appeared to be linked to increased abundance of pine forests. There was no link with specifically wet or dry environmental conditions at either site. While this study reveals much new information concerning the impact of climate change and human occupation on the environment, more studies from SW Turkey are required in order to properly quantify the range of the observed phenomena and the magnitude of their impacts

    Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean

    Get PDF
    This is the final version of the article. Available from AAAS via the DOI in this record.From 2000 to 2015, tsunamis and storms killed more than 430,000 people worldwide and affected a further >530 million, with total damages exceeding US$970 billion. These alarming trends, underscored by the tragic events of the 2004 Indian Ocean catastrophe, have fueled increased worldwide demands for assessments of past, present, and future coastal risks. Nonetheless, despite its importance for hazard mitigation, discriminating between storm and tsunami deposits in the geological record is one of the most challenging and hotly contended topics in coastal geoscience. To probe this knowledge gap, we present a 4500-year reconstruction of "tsunami" variability from the Mediterranean based on stratigraphic but not historical archives and assess it in relation to climate records and reconstructions of storminess. We elucidate evidence for previously unrecognized "tsunami megacycles" with three peaks centered on the Little Ice Age, 1600, and 3100 cal. yr B.P. (calibrated years before present). These ~1500-year cycles, strongly correlated with climate deterioration in the Mediterranean/North Atlantic, challenge up to 90% of the original tsunami attributions and suggest, by contrast, that most events are better ascribed to periods of heightened storminess. This timely and provocative finding is crucial in providing appropriately tailored assessments of coastal hazard risk in the Mediterranean and beyond.Financial support for this work was provided by Labex OT-Med (ANR-11-LABX-0061). Additional assistance was provided by the Institut Universitaire de France (CLIMSORIENT project), ANR Geomar (ANR-12-SENV- 0008-01), A*MIDEX (ANR-11-IDEX-0001-02), and Partenariat Hubert Curien PROCOPE (33361WG). J.G. benefited from a research fellowship at Chrono-environnement funded by the Région Bourgogne-Franche-Comté

    Not the End of the World? Post-Classical Decline and Recovery in Rural Anatolia

    Get PDF
    Between the foundation of Constantinople as capital of the eastern half of the Roman Empire in 330 CE and its sack by the Fourth Crusade in 1204 CE, the Byzantine Empire underwent a full cycle from political-economic stability, through rural insecurity and agrarian decline, and back to renewed prosperity. These stages plausibly correspond to the phases of over-extension (K), subsequent release (Ω) and recovery (α) of the Adaptive Cycle in Socio-Ecological Systems. Here we track and partly quantify the consequences of those changes in different regions of Anatolia, firstly for rural settlement (via regional archaeological surveys) and secondly for land cover (via pollen analysis). We also examine the impact of climate changes on the agrarian system. While individual histories vary, the archaeological record shows a major demographic decline between ca .650 and ca. 900 CE in central and southwestern Anatolia, which was then a frontier zone between Byzantine and Arab armies. In these regions, and also in northwest Anatolia, century-scale trends in pollen indicate a substantial decline in the production of cereal and tree crops, and a smaller decline in pastoral activity. During the subsequent recovery (α) phase after 900 CE there was strong regional differentiation, with central Anatolia moving to a new economic system based on agro-pastoralism, while lowland areas of northern and western Anatolia returned to the cultivation of commercial crops such as olive trees. The extent of recovery in the agrarian economy was broadly predictable by the magnitude of its preceding decline, but the trajectories of recovery varied between different regions

    On magnetometer heading updates for inertial pedestrian navigation system

    Get PDF
    A magnetometer is often used to aid heading estimation of a low-cost Inertial Pedestrian Navigation System (IPNS) without which the latter will not be able to accurately estimate heading for more than a few seconds, even with the help of Zero Velocity Update (ZVU). Heading measurements from the magnetometer are typically integrated with gyro heading in an estimation filter such as Kalman Filter (KF) — to best estimate the true IPNS heading, resulting in a better positioning accuracy. However indoors the reliability of these measurements is often questionable because of the magnetic disturbances that can disrupt the measurements. To solve this problem, a filtering method is often used to select the best measurements. However, the importance of the frequency of these measurement updates has not been highlighted. In this paper, the impact of frequency of magnetometer updates on the overall accuracy of the navigation system is presented. The paper starts by discussing the use of a magnetometer in a low-cost IPNS. An exemplary filter to extract reliable heading measurements from the magnetometer is then described. From real field trial results, it will be shown that even if reliable heading measurements may be obtained indoors, it is still insufficient to increase the positioning accuracy of the low-cost IPNS unless it is reliable on every epoch

    Holocene Landscape Dynamics and Long-term Population Trends in the Levant

    Get PDF
    This paper explores long-term trends in human population and vegetation change in the Levant from the early to the late Holocene in order to assess when and how human impact has shaped the region’s landscapes over the millennia. To do so, we employed multiple proxies and compared archaeological, pollen and palaeoclimate data within a multi-scalar approach in order to assess how Holocene landscape dynamics change at different geographical scales. We based our analysis on 14 fossil pollen sequences and applied a hierarchical agglomerative clustering and community classification in order to define groups of vegetation types (e.g. grassland, wetland, woodland, etc.). Human impact on the landscape has been assessed by the analysis of pollen indicator groups. Archaeological settlement data and Summed Probability Distribution (SPD) of radiocarbon dates have been used to reconstruct long-term demographic trends. In this study, for the first time, the evolution of the human population is estimated statistically and compared with environmental proxies for assessing the interplay of biotic and abiotic factors in shaping the Holocene landscapes in the Levant
    corecore