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It is well known that observing nonlocal correlations allows us to draw conclusions about the quantum systems
under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon
known as self-testing. Self-testing becomes particularly interesting if we can make the statement robust, so that
it can be applied to a real experimental setup. For the simplest self-testing scenarios the most robust bounds
come from the method based on operator inequalities. In this work we elaborate on this idea and apply it to the
family of tilted Clauser-Horne-Shimony-Holt (CHSH) inequalities. These inequalities are maximally violated by
partially entangled two-qubit states and our goal is to estimate the quality of the state based only on the observed
violation. For these inequalities we have reached a candidate bound and while we have not been able to prove
it analytically, we have gathered convincing numerical evidence that it holds. Our final contribution is a proof
that in the usual formulation, the CHSH inequality only becomes a self-test when the violation exceeds a certain
threshold. This shows that self-testing scenarios fall into two distinct classes depending on whether they exhibit
such a threshold or not.

DOI: 10.1103/PhysRevA.99.052123

I. INTRODUCTION

Among the many sins of quantum mechanics, correlations
between spacelike separated systems occupy a rather special
place. Stronger-than-classical correlations [1,2] were initially
seen as a problem, but have now become an inherent (and
useful) feature of the quantum world. Investigating the differ-
ence between correlations achievable in quantum mechanics
and in classical (local-realistic) theories goes under the name
of Bell nonlocality [3], and one of the great achievements of
this field is the ability to rule out any classical description of
the system under consideration based only on the observed
statistics. While clearly of fundamental importance, it turns
out that this argument can be pushed one step further.

If we can rule out a classical description, our next
guess is that the system is governed by quantum mechan-
ics. Under this assumption, it makes sense to ask which
features of the quantum system give rise to such strik-
ingly nonclassical behavior. Can we, for instance, deduce
something about the quantum state or the measurements
performed?

While it is clear that in order to observe nonlocal cor-
relations one must perform incompatible measurements on
entangled quantum systems, it is not clear which meaningful
quantitative statements can be made. It might therefore come
as a surprise that certain nonlocal correlations can be realized
in an essentially unique manner. While this observation can
be found in the early works of Tsirelson [4,5], Summers and
Werner [6], and Popescu and Rohrlich [7], it did not attract
much attention until the seminal work of Mayers and Yao
[8,9]. Mayers and Yao realized that this effect can be used to
certify quantum devices under minimal assumptions and they
called this phenomenon self-testing.

The goal of self-testing is to make quantitative statements
about the quantum realization, e.g., about the entanglement
present in a quantum state or about the incompatibility of
the measurements performed. Self-testing is closely related to
the field of device-independent cryptography whose goal is
to certify properties of the classical output produced by quan-
tum devices. Device-independent cryptography is a promising
solution for randomness generation [10–15], quantum key
distribution [16–21], and several other tasks [22–26]. For a
brief overview of device-independent cryptography, we rec-
ommend Ref. [27] (focus on quantum key distribution) and
Ref. [28] (focus on randomness generation). For a comprehen-
sive review of both philosophical and technological aspects
of randomness in quantum physics, we refer the reader to
Ref. [29].

In this work we focus solely on the task of self-testing in
its most common formulation, i.e., when the goal is to certify
the state and the measurements performed on it.1 While there
is a large class of scenarios in which self-testing statements
have been proven, most results only apply if the observed
statistics are (almost) perfect [34–47]. While such results are
robust in the sense that they are stable under sufficiently small
perturbations, the obtained noise tolerance is not relevant from
the experimental point of view. Our goal, on the other hand,
is to derive self-testing statements which can be applied to
real statistics collected in real experiments.2 Such results are

1Note that other quantum objects such as quantum channels [30],
entangled measurements [31,32], or weak measurements [33] can be
self-tested in more complex scenarios.

2For an intuitive explanation of the difference between robustness
and experimentally-relevant robustness see Sec. I of Ref. [48].
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of interest to both experimentalists [49–51] and theoreticians
investigating specific physical setups [52], but deriving them
turns out to be significantly more challenging.

The first result of this type is due to Bardyn et al. [34]
and there are currently two methods of deriving such results:
the swap method [53–55] and the self-testing from operator
inequalities (STOPI) method [56]. While the swap method is
extremely versatile and can be (at least in principle) imme-
diately applied to any Bell scenario, it has two weaknesses.
First of all, it is a numerical method which scales unfavorably
with the dimension of the system we wish to certify: The
largest states certified using this method until today consist of
two ququarts [57] or four qubits [55]. The second, and more
severe, disadvantage of the swap method is that the output of
the computation is just a number, which gives little intuition
about the underlying physics.

The STOPI method, on the other hand, is more time con-
suming, as it requires a more thorough understanding of the
particular self-testing scenario, but the resulting bounds are
significantly stronger (in some cases even tight). In Ref. [56]
the STOPI method was used to derive analytic self-testing
bounds for the Clauser-Horne-Shimony-Holt (CHSH) [58]
and Mermin [59] inequalities. In this work we applied this
method to self-test partially entangled pure two-qubit states
using the family of tilted CHSH inequalities. Investigating
some special cases led us to conjecture a particular form of
the self-testing statement. While we were not able to prove it
analytically, we have gathered strongly convincing numerical
evidence that it holds. The conjectured statement improves on
the bounds obtained from the swap method [53].

Our second contribution is a proof that the CHSH inequal-
ity becomes a self-test only above a certain violation. More
specifically, we have constructed a state which violates the
CHSH inequality, but does not satisfy the usual self-testing
criteria. This is in contrast with the Mermin inequality in
which the value of the self-testing threshold coincides with
the maximum value achievable if only two out of three parties
are entangled.

In Sec. II we formalize the problem of self-testing, while in
Sec. III we explain the STOPI method. In Sec. IV we present
the conjectured robust self-testing bounds for partially entan-
gled two-qubit states. In Sec. V we explain the construction of
the state that violates the CHSH inequality but for which none
of the usual self-testing statements can be made. In Sec. VI
we summarize our results and discuss some open problems.

II. PRELIMINARIES

In this section we establish the basic notation and formalize
the problem of self-testing.

A. Notation

We denote the identity matrix by 1 and the Pauli matrices
by X, Y, and Z. For a Hermitian matrix X we use λmax(X )
and λmin(X ) to denote its largest and smallest eigenvalue,
respectively.

For arbitrary linear operators X and Y we use 〈X,Y 〉 :=
tr(X †Y ) to denote the Hilbert-Schmidt inner product and ||X ||p

to denote the Schatten p-norm. For a positive-semidefinite

operator A, B := √
A is the unique positive-semidefinite

operator satisfying B2 = A. The fidelity of two positive-
semidefinite operators A and B is defined as F (A, B) =
||√A

√
B||21.

The Hilbert space corresponding to register A is denoted
by HA and in this work we assume all the Hilbert spaces to be
finite dimensional. The set of linear operators acting on H is
denoted by L(H).

For a completely positive map � : L(HA) → L(HB), the
dual map �† : L(HB) → L(HA) is the unique linear map
which satisfies 〈�(X ),Y 〉 = 〈X,�†(Y )〉 for all X ∈ L(HA)
and Y ∈ L(HB). The map � is a quantum channel if it is
trace preserving, which is equivalent to the dual map �† being
unital, i.e., �†(1B) = 1A.

The Choi-Jamiołkowski isomorphism states that com-
pletely positive maps � : L(HA) → L(HB) are in 1:1 cor-
respondence with positive semidefinite operators acting on
HA ⊗ HB. Let {| j〉}d

j=1 be the standard basis on HA, let HA′ ∼=
HA, and let

�AA′ = |�〉〈�|AA′ for |�〉AA′ =
d∑

j=1

| j〉A| j〉A′

be an unnormalized maximally entangled state. The (unnor-
malized) Choi state of �, denoted by CAB, is defined as

CAB := (idA ⊗�A′ )(�AA′ )

and it is well known that for any X ∈ L(HA),

�(X ) = trA
[
CAB

(
X T

A ⊗ 1B
)]

,

where T denotes the transpose in the standard basis. If � is
trace preserving, then CA = 1, whereas if � is unital, then
CB = 1.

B. Self-testing of quantum states

Consider the usual Bell scenario in which two spacelike
separated parties, Alice and Bob, perform local measurements
on a shared quantum state. Alice and Bob would like to certify
that the state they share is entangled, but as they do not trust
their measurement devices, they are unable to perform full
state tomography. Their only option is to choose measure-
ment settings, observe the outcomes, and collect statistics. To
simplify the problem we assume that their devices behave
in the same way every time they are used, i.e., that they
give rise to a well-defined conditional probability distribution
Pr(a, b|x, y), where a and b are outputs and x and y are
inputs of Alice and Bob, respectively. Since the probability
vector P = [Pr(a, b|x, y)]abxy can be estimated to arbitrary
precision and we are interested in the fundamental aspects of
self-testing, we assume to have access directly to the exact
probability distribution P.3

From a mathematical point of view, self-testing of quantum
states is in essence a matter of the following question: Given
a conditional probability distribution

P = [Pr(a, b|x, y)]abxy,

3Not surprisingly, drawing conclusions from a finite set of data is
significantly harder (see Refs. [60–62]).
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which comes from measuring a quantum system, i.e.,

Pr(a, b|x, y) = tr
[(

Px
a ⊗ Qy

b

)
ρAB

]
,

what can we deduce about the unknown state ρAB? We in-
tentionally denote the unknown state by ρAB, as we do not
want to assume its purity.4 Let us also emphasize here that
no knowledge of the observables is assumed, which makes
self-testing a significantly different problem from quantum
state tomography.

It is important to realize that the observed statistics
Pr(a, b|x, y) can never uniquely determine the state. Indeed,
the two equivalences we must always allow for are (i) local
isometries and (ii) the presence of additional degrees of free-
dom. Motivated by these limitations, we say that ρAB contains
σA′B′ if there exist local quantum channels �A : L(HA) →
L(HA′ ) and �B : L(HB) → L(HB′ ) that extract a perfect copy
of σA′B′ from ρAB, i.e.,

(�A ⊗ �B)(ρAB) = σA′B′ . (1)

It is intuitively clear that this formulation is equivalent to the
usual formulation using isometries and an auxiliary state, but
for completeness we provide a proof in Appendix A.5

The concept of local extraction channels is well aligned
with the conditions of a Bell test in which Alice and Bob
are only allowed local measurements (no communication) and
they must always produce an outcome (from a fixed alphabet).
Similarly, we require the extraction channels to act locally and
deterministically produce a state (of the correct dimension).

Replacing local extraction channels by a distillation proce-
dure, i.e., allowing for classical communication, completely
changes the problem. Note that the same phenomenon occurs
in Bell nonlocality, where states can be preprocessed to en-
hance their nonlocal properties [64].

A self-testing statement consists of two components: (i) a
quantum-realizable probability distribution P∗ and (ii) a pure
bipartite state �A′B′ . The statement asserts that if an unknown
state ρAB is capable of producing the probability distribution
P∗ (under some local measurements), then ρAB must contain
�A′B′ .

Of course, in a real experiment one never actually observes
the exact probability distribution P∗,6 which means that an
improved, robust version of Eq. (1) is needed. For exactly that
purpose the channel formulation is particularly convenient, as
it is immediately clear how to turn the original requirement
into an approximate statement. We define the extractability of
�A′B′ from ρAB as [34,56]

�(ρAB → �A′B′ ) := max
�A,�B

F ((�A ⊗ �B)(ρAB),�A′B′ ), (2)

where the maximization is taken over all quantum channels
from A to A′ and B to B′, respectively. It is clear that ex-
tractability is invariant under local unitaries applied to �A′B′ ,

4Under the purity assumption, even classical correlations are suffi-
cient to certify entanglement [63].

5At the end of Appendix A, we also point out that the formulation
with unitaries instead of isometries is not quite correct.

6The two most obvious obstacles are experimental noise and finite
statistics.

i.e., it depends only on the Schmidt coefficients of the target
state. The maximal value of extractability equals 1 and implies
that ρAB contains �A′B′ . The lowest value, on the other hand,
equals λ2

0, where λ0 is the largest Schmidt coefficient of �A′B′ ,
because Alice and Bob can always replace ρAB with a pure
product state. Moreover, extractability is convex in the in-
put state, which implies that �(ρAB → �A′B′ ) = λ2

0 whenever
ρAB is separable. Note that there exist other measures for
robust self-testing, but extractability is the only one for which
experimentally-relevant robustness has been proven (see
Appendix A 2 for details).

In this language a self-testing statement says that if ρAB is
capable of producing P∗, then �(ρAB → �A′B′ ) = 1. A robust
version states that observing statistics close to P∗ implies
that the extractability is close to 1. More generally, we are
interested in deriving a nontrivial lower bound on �(ρAB →
�A′B′ ) as a function of the observed statistics.

In this work, instead of looking at the entire probability dis-
tribution P, we focus on some suitably chosen Bell function.
A Bell function is specified by a vector of real coefficients
(cabxy)abxy, and its value evaluated on the probability distribu-
tion P equals

β :=
∑
abxy

cabxy Pr(a, b|x, y).

If βC and βQ are the maximal classical and quantum values,
respectively, then our goal is to prove

�(ρAB → �A′B′ ) � f (β ) (3)

for some explicit function f : [βC, βQ] → [0, 1]. While in
principle f could be an arbitrary function, we can without loss
of generality assume that it is nondecreasing. Since any state
capable of producing the Bell violation of β is also capable of
producing any violation in the interval [βC, β], we can define

fnd(β ) := sup
x∈[βC ,β]

f (x),

where the subscript in fnd stands for nondecreasing, and we
immediately see that

�(ρAB → �A′B′ ) � fnd(β ).

While such trade-offs could be investigated for arbitrary com-
binations of target state and Bell function, the term self-testing
is only used if the maximal violation of the Bell function
certifies the presence of the target state, i.e., f (βQ) = 1. A
self-testing statement is called robust if f (β ) → 1 as β → βQ.

An important advantage of self-testing statements based
only on the Bell value is the fact that we can assess their
tightness by deriving an explicit upper bound on f (β ). If the
Bell inequality is not violated, we cannot improve over the
trivial bound of λ2

0, i.e., f (βC ) = λ2
0. On the other extreme,

by assumption we have f (βQ) = 1. Since every intermediate
violation can be achieved as a mixture of these two points,
we cannot hope to certify extractability larger than the value
corresponding to such a mixture. This leads to an upper bound
of the form

f (β ) � λ2
0 + (

1 − λ2
0

) β − βC

βQ − βC
. (4)
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This upper bound tells us how much room for improvement
there potentially is and it is worth mentioning that in some
scenarios, one can prove self-testing statements matching this
upper bound [56]. A good indication of the strength of a
self-testing bound is the critical Bell value above which the
statement becomes nontrivial, i.e.,

β∗
f := inf

β

{
f (β ) > λ2

0

}
.

Clearly, β∗
f is computed for a specific self-testing bound (i.e.,

a particular function f ) and is not a fundamental property of
the Bell inequality under consideration.

III. SELF-TESTING FROM OPERATOR INEQUALITIES

The STOPI method was introduced and applied to two
specific examples in Ref. [56]. Here we provide a more
detailed discussion of the underlying idea.

Our goal is to prove a lower bound on the extractability as a
function of the observed Bell violation β. The STOPI method
is constructive: Given a quantum realization, which consists
of the shared state ρAB, the measurements of Alice {Px

a },
and the measurements of Bob {Qy

b}, we explicitly construct
the local extraction channels �A and �B and we provide a
lower bound on their performance as a function of β. The
extraction channel of Alice �A : L(HA) → L(HA′ ) is built
out of her measurement operators {Px

a } and similarly the
extraction channel of Bob �B : L(HB) → L(HB′ ) depends
only on {Qy

b}. We are interested in the fidelity

F ((�A ⊗ �B)(ρAB),�A′B′ ),

but since �A′B′ is a pure state, we can replace the fidelity by
the inner product, which allows us to replace the channels by
their duals

F ((�A ⊗ �B)(ρAB),�A′B′ )

= 〈(�A ⊗ �B)(ρAB),�A′B′ 〉
= 〈ρAB, (�†

A ⊗ �
†
B)(�A′B′ )〉.

Define

K := (�†
A ⊗ �

†
B)(�A′B′ ) (5)

and note that this operator depends only on the measurement
operators (and not on the input state ρAB). Another operator
that depends only on the measurement operators is the Bell
operator defined as

W :=
∑
abxy

cabxyPx
a ⊗ Qy

b,

which by construction satisfies tr(W ρAB) = β. We might
therefore hope to prove an operator inequality of the form

K � sW + μ1 (6)

for suitably chosen (real) constants s and μ. If we prove this
operator inequality for all choices of local measurements on
Alice and Bob, it immediately implies that for any input state
ρAB we have

�(ρAB → �A′B′ ) � F ((�A ⊗ �B)(ρAB),�A′B′ )

= 〈ρAB, K〉 � 〈ρAB, sW + μ1〉
= sβ + μ.

Therefore, we obtain precisely a self-testing statement of the
form given in Eq. (3) for

f (β ) = sβ + μ.

This approach reduces the problem of self-testing to three
steps: (i) constructing suitable extraction channels, (ii) choos-
ing the right constants s and μ, and (iii) proving the resulting
operator inequality.

A. Extraction channels from measurement operators

Given a set of measurements operators {Px
a } acting on HA,

we want to construct an extraction channel �A : L(HA) →
L(HA′ ), where the Hilbert space HA′ is determined by the tar-
get state. Let us first point out that for the purpose of deriving
self-testing statements it suffices to construct channels for pro-
jective measurement operators. In the case of nonprojective
measurement operators, Alice starts her extraction procedure
by enlarging her Hilbert space until she can find projective
measurements reproducing precisely the same statistics. She
would then construct an extraction channel using the new,
projective measurement operators.

Instead of first constructing the channel and then taking its
dual, it is easier to construct the dual channel �† : L(HA′ ) →
L(HA) directly and it is convenient to specify it through its
Choi state. The dual channel must be unital, so the Choi state
CA′A must satisfy CA = 1. If {Oj} j ∈ L(HA′ ) is an operator
basis on L(HA′ ), the Choi state can be written as

CA′A :=
∑

j

O j ⊗ Fj
({

Px
a

})
for some collection of functions {Fj} such that Fj :
[L(HA)]×k → L(HA), where k is the product of the number
of inputs and outputs. In principle, the only restriction on {Fj}
is that the resulting operator must be a valid Choi operator for
all sets of valid measurement operators {Px

a }, but it is natural
to choose extraction channels satisfying certain conditions.

First of all, sets of measurement operators which are related
by a unitary should be treated in an equivalent manner, i.e.,

Fj
({

UPx
a U †

}) = UFj
({

Px
a

})
U †

for all unitaries U and all j. We call such extraction channels
covariant with respect to the unitary group.

Moreover, whenever the measurement operators exhibit a
certain direct-sum structure, the extraction channels should
preserve it. Given one set of measurements {Px,0

a } acting on
HA0 and another set of measurements {Px,1

a } acting on HA1 ,
we should have

Fj
({

Px,0
a ⊕ Px,1

a

}) = Fj
({

Px,0
a

}) ⊕ Fj
({

Px,1
a

})
.

Restricting ourselves to extraction channels satisfying these
two criteria makes it easier to analyze the resulting operator
inequalities. As explained in the next section, these restric-
tions do not affect the obtained bounds.

Since the target state is pure, we can assume that HB′ ∼=
HA′ and we can choose the same operator basis for HB′ .
Analogously to CA′A, the Choi state describing �

†
B reads

CB′B :=
∑

j

O j ⊗ Gj
({

Qy
b

})
.
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Computing the K operator gives

K = (�†
A ⊗ �

†
B)(�A′B′ )

= trA′B′
[
(CA′A ⊗ CB′B)

(
�T

A′B′ ⊗ 1AB
)]

=
∑

jk

α jkFj
({

Px
a

}) ⊗ Gk
({

Qy
b

})
,

where α jk := tr [(Oj ⊗ Ok )�T
A′B′ ].

B. Choosing the constants

Since we are interested in nondecreasing functions of β, we
restrict ourselves to the case s > 0, but otherwise all values of
s are in principle worth considering. For a particular choice of
extraction channels and s, we define

μ(s) := inf λmin(K − sW ), (7)

where the infimum is taken over all possible measurements of
Alice and Bob (in all finite dimensions). Clearly, this is simply
the largest value of μ for which the operator inequality (6)
holds for all possible measurements. To see that μ(s) does not
diverge to −∞, note that

μ(s) � inf λmin(−sW ) � − sup ||sW ||∞ � −s
∑
abxy

|cabxy|.

It should now be clear why the restrictions discussed
in the preceding section simplify the computation of μ(s).
Requiring the extraction channels to be covariant ensures that
the spectrum of K − sW is not affected by applying local
unitaries to the measurement operators of Alice and Bob,
which significantly reduces the parameter space. Requiring
the channels to preserve the direct-sum structure ensures that
the same direct-sum structure is inherited by the operator
K − sW which facilitates bounding its spectrum.

The quantity μ(s) is in general hard to compute, but if we
were able to do so for a fixed choice of extraction channels,
then we would obtain a family of lower bounds of the form

fs(β ) = sβ + μ(s)

parametrized by s > 0.7 All these bounds could be collected
in a single function defined as

sup
s>0

(sβ + μ(s)).

In fact, we could also optimize over the choice of extraction
channels. Such an optimization might seem particularly ad-
vantageous as we would expect that extraction channels in
the regime β ≈ βQ should be rather different from those in
the regime β ≈ βC . It is therefore rather surprising that in all
the examples considered in Ref. [56] and in this work, the
best lower bounds come from a single choice of extraction
channels and a single value of s. This situation stands in
contrast to the swap method in which it is beneficial to tailor
the extraction channels to the observed violation [see Eqs. (33)
and (34) of Ref. [53]]. In this work we focus on the case where

7Every s > 0 gives a valid bound, but for poor choices of extraction
channels and/or the parameter s, the bound might be trivial for the
entire range of β ∈ [βC, βQ].

all the systems are finite dimensional, but the method can be
equally well applied to infinite-dimensional systems as long
as the construction of extraction channels from measurement
operators and the proof of the relevant operator inequality
carry over to the infinite-dimensional case.

C. Extracting a qubit from two binary observables

A binary measurement {P0, P1} can be conveniently repre-
sented as an observable A := P0 − P1 (and since P0 + P1 = 1
this mapping is a bijection). An observable is a Hermitian
operator A = A† satisfying −1 � A � 1, whereas projective
measurements give rise to observables satisfying A2 = 1.

The case of two binary observables is particularly sim-
ple due to Jordan’s lemma, which completely characterizes
the interaction between two projective observables. More
specifically, it states that given two projective observables A0

and A1, one can find a unitary which simultaneously block
diagonalizes A0 and A1 into blocks of size 1 × 1 or 2 × 2.
There are four distinct types of 1 × 1 blocks corresponding
to A0 = ±1, A1 = ±1, whereas the 2 × 2 blocks form a one-
parameter family given by

A0 := cos(a)X + sin(a)Z, (8)

A1 := cos(a)X − sin(a)Z (9)

for a ∈ (0, π/2). In Sec. III A we have argued that by en-
larging the Hilbert space we can focus solely on projective
measurements. Similarly, in this case we could enlarge the
Hilbert space to ensure that every 1 × 1 block is paired up
with another suitably chosen 1 × 1 block such that the two
together are unitarily equivalent to a 2 × 2 block correspond-
ing to a = 0 or a = π/2. As before, this grouping operation
would be the first step of the extraction channel. It is not
strictly necessary, but it makes the analysis easier, since it
ensures that the observables are just a direct sum of 2 × 2
blocks parametrized by a ∈ [0, π/2].

Since we restrict ourselves to covariant extraction chan-
nels, we can assume that the observables are already in block-
diagonal form. Moreover, the channels respect the direct-sum
structure, which implies that we only need to propose a
one-parameter family of qubit channels corresponding to the
2 × 2 blocks. If the extraction channels for Alice and Bob are
denoted by �A(a) and �B(b), respectively, then

K (a, b) := [�†
A(a) ⊗ �

†
B(b)](�A′B′ )

is a 4 × 4 operator. Similarly, let W (a, b) be the 4 × 4 Bell op-
erator constructed from local qubit observables corresponding
to angles a and b for Alice and Bob, respectively. Due to the
block structure, computing the lowest eigenvalue of K − sW
simplifies to

μ(s) := inf λmin(K − sW ) = min
a,b

λmin(K (a, b) − sW (a, b)),

where the minimization is performed over the square (a, b) ∈
[0, π/2] × [0, π/2]. This procedure is precisely the approach
used to derive robust self-testing statements in Ref. [56]. In the
following section, we apply it to the case of the tilted CHSH
inequality.
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IV. ROBUST SELF-TESTING OF ALL ENTANGLED
TWO-QUBIT STATES

Acín et al. introduced a family of Bell functions which are
now commonly referred to as the tilted CHSH family [65].
The corresponding Bell operator reads

Wα := αA0 ⊗ 1 + A0 ⊗ (B0 + B1) + A1 ⊗ (B0 − B1), (10)

where α ∈ [0, 2) is a parameter. The classical and quantum
values of this Bell function equal βC = 2 + α and βQ =√

8 + 2α2, respectively. Clearly, for all values of α we have
βQ > βC , although the gap vanishes as α → 2. The quantum
value can be achieved using a pure state of two qubits �α

A′B′ =
|�α〉〈�α |A′B′ for

|�α〉A′B′ := cos θα|u0〉A′ |v0〉B′ + sin θα|u1〉A′ |v1〉B′ ,

where {|u0〉, |u1〉} and {|v0〉, |v1〉} are orthonormal bases on a
qubit and

θα := 1

2
arcsin

(√
4 − α2

4 + α2

)
. (11)

While the optimal observables of Alice are always maxi-
mally incompatible, which corresponds to setting a = π/4 in
Eqs. (8) and (9), the optimal angle on Bob’s side changes with
α according to

b∗
α := arcsin

(√
4 − α2

8

)
.

Performing these measurements on this particular state turns
out to be essentially the only manner of achieving the maximal
violation, i.e., this Bell inequality is a self-test [37,38]. Since
the range α ∈ [0, 2) is mapped onto θα ∈ (0, π/4], it allows
us to self-test every pure entangled state of two qubits.
Clearly, setting α = 0 yields the CHSH inequality for which
the STOPI method gives strong self-testing bounds [56]
and in this work we apply this approach to the entire range
α ∈ [0, 2).

Before stating the conjectured bound, let us briefly explain
the construction of extraction channels and the choice of

constants sα and μα . The optimal channels for the CHSH case
correspond to full dephasing in X for a = 0, full dephasing
in Z for a = π/2, and an identity channel for a = π/4. This
choice is correct for Alice, because her optimal angle is
always π/4, but for Bob we must introduce a modification
which shifts the occurrence of the identity channel to his op-
timal angle b∗

α . This modification can be achieved by defining
an effective angle which uniformly extends the interval [0, b∗

α]
to [0, π/4] and simultaneously shrinks the interval [b∗

α, π/2]
to [π/4, π/2]. After this modification one can check that this
choice of channels performs well on the vertices of the square
(a, b) ∈ {(0, 0), (0, π/2), (π/2, 0), (π/2, π/2)} and the point
of maximal violation (a, b) = (π/4, b∗

α ). We choose the con-
stant sα so that the smallest eigenvalue of the operator K −
sαW occurs at multiple points (a, b). In the case of CHSH, i.e.,
for α = 0, we can obtain the same smallest eigenvalue on all
the vertices and the point of maximal violation. However, the
case of α > 0 is less symmetric and the optimal choice of sα

only equalizes the smallest eigenvalue at two vertices and the
point of maximal violation. Since the operators corresponding
to the five special points (the vertices and the point of maximal
violation) are easy to analyze (the operators K and W are
diagonal in the same basis), our choice of sα and μα is given
by analytic expressions. One can then check that the resulting
operator inequality holds at these points for the entire range
of α ∈ [0, 2). Unfortunately, verifying the operator inequality
on the rest of the square turns out to be much harder and
we were not able to do it analytically. However, since the
parameter space is bounded (α ∈ [0, 2), a, b ∈ [0, π/2]), one
can generate a grid over this space and check the operator
inequality at those points numerically. We have found that
the operator inequality holds up to numerical accuracy (see
Appendix B for details), which lends support to the following
conjecture.

Conjecture 1. Let α ∈ [0, 2) and let ρAB be a bipartite
quantum state which achieves the tilted CHSH violation of
βα := tr(WαρAB), where Wα is the Bell operator defined in
Eq. (10). Then the extractability of �α

A′B′ from ρAB satisfies

�
(
ρAB → �α

A′B′
)
� sαβα + μα

for

sα := (
√

8 + 2α2 + 2 + α)(3
√

8 + 2α2 − √
4 − α2 − α

√
2)

4(2 − α)2
√

8 + 2α2
,

μα := 1 − sα

√
8 + 2α2.

In Fig. 1 we compare the conjectured bounds with the results
obtained by Bancal et al. using the swap method [53].8

8The formulation used in the swap method involves isometries
rather than channels, but the auxiliary registers are traced out before
computing fidelity with the target state [see Eqs. (10) and (11) in
Ref. [53]]. Therefore, in both cases we obtain lower bounds on
precisely the same quantity (see Appendix A for more details).

Note that if we trust the numerical package used to verify
the operator inequality, this conjecture could be made into
a rigorous bound by explicitly calculating the error term.
The error term would consist of two components: the error
observed numerically on the grid (for our grid this value is of
the order of 10−9) and the discretization error. Unfortunately,
since both sα and μα diverge as α → 2, the discretization error
would necessarily diverge in this limit. Therefore, no finite
grid enables us to obtain certified bounds for α arbitrarily
close to 2.
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FIG. 1. Comparison of the conjectured lower bounds (solid line)
with the previous results of Bancal et al. (green points) [53]. The
range of βα is chosen to cover the entire range between the classical
and the quantum values. The dashed horizontal line indicates the
trivial lower bound, whereas the dotted line corresponds to the upper
bound given in Eq. (4). Vertical dashed lines mark the threshold
violation β∗ above which the statement becomes nontrivial. The
case of α = 0 corresponds to the self-testing bound for the CHSH
inequality derived in Ref. [56].

V. NONTRIVIAL THRESHOLD VIOLATION FOR THE
CHSH INEQUALITY

In Ref. [56] the STOPI method was used to derive robust
bounds on self-testing the singlet9 using the CHSH inequality.
The resulting statement is nontrivial for any violation exceed-
ing the threshold value of β∗

CHSH := (16 + 14
√

2)/17 ≈ 2.11
(recall that for the CHSH inequality we have βC = 2 and
βQ = 2

√
2). We have tried to improve on this result, but we

have not succeeded. In fact, the dephasing channels specified
in the original paper seem to be by far the best choice.

This phenomenon made us wonder whether the existence
of a threshold is an inherent feature of quantum mechanics,

9As explained in Sec. II B in the context of self-testing, it is only the
Schmidt coefficients that matter, so we use the term singlet to mean
any (fixed) maximally entangled state of two qubits.

independent of the proof technique. In other words, maybe
one can only make a self-testing statement for sufficiently
large violations. The example below shows that this is indeed
the case. More specifically, we have constructed a bipartite
state which violates the CHSH inequality, but whose singlet
extractability does not exceed the separable threshold of 1

2 . In
this section we explain the construction of the state, briefly
outline the idea of the proof, and discuss the implications
of this result, while the technical details can be found in
Appendix C.

Suppose that the system of Alice (Bob) consists of two
subsystems: a three-dimensional classical register denoted by
X (Y ) and a qubit denoted by A (B). Consider the joint state

ρXYAB =
2∑

x,y=0

pxy|x〉〈x |X ⊗ |y〉〈y|Y ⊗ ρ
xy
AB,

where {pxy} is a normalized probability distribution over
x, y ∈ {0, 1, 2} and ρ

xy
AB are normalized two-qubit states to be

specified later. The observables of Alice are given by

A0 = |0〉〈0|X ⊗ ZA + |1〉〈1|X ⊗ ZA + |2〉〈2|X ⊗ ZA,

A1 = |0〉〈0|X ⊗ ZA + |1〉〈1|X ⊗ XA + |2〉〈2|X ⊗ (−Z)A.
(12)

The observables of Bob are precisely the same, but act on
subsystems Y and B instead of X and A. Computing the CHSH
operator10 gives

W =
2∑

x,y=0

|x〉〈x |X ⊗ |y〉〈y|Y ⊗ W xy
AB,

where W xy
AB are the resulting two-qubit operators. Let us

arrange the nine possible combination of (x, y) on a 3 × 3
grid, where one axis corresponds to x and the other axis
corresponds to y. We will refer to the point (x, y) = (1, 1)
as the center, while the remaining eight points constitute the
frame. The center allows for the optimal CHSH violation and
we choose ρ11

AB to be the corresponding eigenstate of W 11
AB , i.e.,

tr(W 11
ABρ11

AB) = 2
√

2.

For all the points on the frame the two-qubit operator is a
product operator whose eigenvalues are {−2, 2}. We choose
the states ρ

xy
AB to be classically correlated and satisfy

tr
(
W xy

ABρ
xy
AB

) = 2.

Clearly, this setup violates the CHSH inequality as long as
p11 > 0.

Now we would like to show that there exists a probability
distribution satisfying p11 > 0 such that the resulting state
ρXYAB has singlet extractability of 1

2 . In general this is a hard
task, as we must show that this value cannot be exceeded re-
gardless of the choice of the extraction channels. Fortunately,
the presence of classical registers significantly simplifies the
problem due the following observation: Any quantum channel
that acts simultaneously on classical and quantum registers
can be simulated by first reading off the value of the classical
register and then applying a particular quantum channel to

10The CHSH operator is obtained by setting α = 0 in Eq. (10).
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the quantum register (for completeness we provide a proof;
see Lemma 2 in Appendix C). This observation implies that
instead of considering channels from L(C3 ⊗ C2) to L(C2),
it suffices to consider triples (one corresponding to each
value of the classical register) of qubit [L(C2) → L(C2)]
channels.

All the states on the frame are classically correlated, but the
local bases are different for different points. In fact, one can
show that the only strategy that achieves optimal extraction
(i.e., fidelity of 1

2 ) on all the frame points corresponds to
erasing the initial state and replacing it with a fixed prod-
uct state. This operation is achieved precisely by the full
amplitude-damping channel. On the other hand, in order to
preserve entanglement of the state in the center, one should
apply some nondestructive channels, e.g., unitaries. These two
requirements are highly incompatible and this incompatibility
is precisely what our proof hinges on. We choose a probability
distribution concentrated on the frame, which forces Alice
and Bob to perform channels close to full amplitude damp-
ing, and we show that such channels necessarily destroy the
entanglement present in the center. The proof, which consists
of a long sequence of elementary inequalities, can be found in
Appendix C.

Proposition 1. There exists a bipartite state ρXYAB which
produces a CHSH violation of β ≈ 2.0014 but nevertheless
exhibits a singlet extractability of 1

2 .
This result can be interpreted in several ways. First of

all, it implies that self-testing of the singlet using the CHSH
inequality is only possible above some threshold. We find
this insight rather surprising, since it shows that self-testing
scenarios can be split up into two classes depending on
whether they exhibit a threshold (like the CHSH inequality) or
not (like the Mermin inequality [56]). Intuitively, one would
conjecture that the presence of a threshold is generic and
only in some special circumstances can we make self-testing
statements arbitrarily close to the classical value βC . Note that
the Mermin inequality is frustration-free in the sense that the
optimal quantum realisation simultaneously saturates every
term of the Bell operator (contrary to the CHSH inequality).
We conjecture that frustration-freeness is the source of strong
self-testing properties.

We do not know what the exact threshold for the CHSH
inequality is, but it must lie in between 2.0014 and β∗

CHSH ≈
2.11. The analysis we perform could certainly be tightened to
improve the lower limit of this interval, but one cannot hope
for a significant improvement using our method.

It is important to realize that our result crucially relies on
choosing the extractability as the quantity relevant for the task
of self-testing and one can ask whether the same threshold
phenomenon appears if we replace the fidelity with some other
distance measure such as the trace distance. While we do not
have a definite answer to this question, we would like to point
out that extractability is the only quantity for which robust
self-testing statements have been proven, i.e., it seems to be
the most “forgiving” one. We therefore conjecture that if a
threshold occurs for the extractability, it will also appear for
any other quantity that accurately captures the task of self-
testing (although the actual threshold values will of course be
different).

We have shown that from the extractability point of view
the state ρXYAB is as uninteresting as any separable state, but
it is clear that the entanglement becomes accessible when
more general transformations are allowed. If we allow for
nondeterministic entanglement extraction (Alice and Bob ap-
ply a local extraction map which either succeeds or fails and
we only care about the performance if they both succeed),
all the entanglement can be extracted. In a similar fashion
the entanglement becomes accessible if we allow classical
communication between Alice and Bob, i.e., we perform
entanglement distillation. One could therefore ask whether a
stronger counterexample could be found, in which we find a
state which is not only nonextractable but also nondistillable.
Such a counterexample is however not possible, because
every state that violates the CHSH inequality is necessarily
distillable [66].

At first glance our result seems related to the celebrated
conjecture of Peres stating that undistillable states do not
violate Bell inequalities [67] (recently disproved by Vértesi
and Brunner [68]), but this similarity is rather superficial.
Distillability is a fundamental property of entanglement and
does not require any particular reference state. Singlet ex-
tractability, on the other hand, is defined with respect to a
specific target state and is tailored specifically to the task of
self-testing.

VI. CONCLUSION AND OPEN QUESTIONS

In this work we have focused on the problem of self-testing
in the channel formulation as proposed by Bardyn et al. [34].
We have discussed the recently proposed STOPI method and
applied it to the tilted CHSH inequality. Moreover, we have
shown that self-testing using the CHSH inequality is only
possible above some threshold, which implies the existence of
two fundamentally different classes of self-testing scenarios.

Let us conclude by presenting a couple of directions for
future research. The first natural extension would be to look at
scenarios with more than two parties, but still only two inputs
and two outputs per party. The family of Mermin-Ardehali-
Belinskii-Klyshko inequalities [59,69,70] is a promising can-
didate because it is permutation symmetric and the optimal
observables are precisely the same as for the CHSH and
Mermin inequalities. We therefore expect that applying the
same channels could already give satisfactory results. A more
challenging goal is to apply the STOPI method to scenarios
going beyond Jordan’s lemma, i.e., where the number of
inputs or outputs is higher than 2. As this is not an easy
task, it might be more tractable in a more restrictive setup,
e.g., in a semi-device-independent scenario where one of the
parties is trusted (equivalent to steering [71–73]). The STOPI
method has been successfully applied to prepare-and-measure
scenarios in which the transmitted system is a qubit [74] and
one might also try to apply it to higher-dimensional cases
(although one should remember that they are self-tests in a
weaker sense [75]).

Another important concept that arises from this work is the
threshold violation. We have shown that the CHSH inequality
exhibits a threshold violation, but we have not pinned down
the number. Computing the exact number is likely to be hard
and moreover the actual value might depend on the specific
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formulation of self-testing, which makes it less interesting
from a fundamental point of view. However, we see the sheer
existence of a threshold as something that deserves a better
understanding. We would first like to know whether there
exists an alternative natural formulation of the self-testing
problem for which the threshold does not appear. If that is not
the case, it would be interesting to find out which features of
the Bell inequality determine whether it exhibits a threshold
or not and which of the two behaviors is generic. We would
also like to have an example of a bipartite inequality without
a threshold.

Let us finish by pointing out that while the current formu-
lation of self-testing works well in some scenarios, there is
some recent evidence that the problem of deducing proper-
ties of quantum systems from statistics alone is generically
much harder, particularly in multipartite scenarios [76]. This
evidence motivates more relaxed formulations of the problem,
where instead of pinning down the exact state, we are happy to
obtain a lower bound on some entanglement measure [77–81].
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APPENDIX A: FORMULATIONS OF THE
SELF-TESTING PROBLEM

In this Appendix we discuss possible formulations of the
self-testing problem. In the first section we show that the three
commonly used formulations are equivalent. In the second
section we explain how to make these formulations robust
and discuss the relations between the resulting inequivalent
measures for robust self-testing.

1. Exact self-testing definitions

A linear map V : HA → HB is called an isometry if it
satisfies V †V = 1A. For a Hilbert space H let S (H) be the
set of density operators acting on H. Let HX and HX ′ for
X ∈ {A, B} be finite-dimensional Hilbert spaces. The target
state �A′B′ ∈ S (HA′ ⊗ HB′ ) is pure (�2

A′B′ = �A′B′ ) and its
marginals (�A′ := trB′ �A′B′ and �B′ := trA′ �A′B′ ) are full
rank [rank(�X ′ ) = dim(HX ′ ) for X ∈ {A, B}, which immedi-
ately implies dim(HA′ ) = dim(HB′ )]. The input state ρAB ∈
S (HA ⊗ HB) is arbitrary.

Proposition 2. The following three statements are
equivalent.

(i) There exist completely positive trace-preserving maps
�X : L(HX ) → L(HX ′ ) such that

(�A ⊗ �B)(ρAB) = �A′B′ . (A1)

(ii) There exist Hilbert spaces HX ′′ , isometries VX : HX →
HX ′ ⊗ HX ′′ , and an auxiliary state σA′′B′′ ∈ S (HA′′ ⊗ HB′′ )

such that

V ρABV † = �A′B′ ⊗ σA′′B′′ , (A2)

where V = VA ⊗ VB is the combined isometry.
(iii) There exist Hilbert spaces HX ′′′ , isometries WX :

HX ′ ⊗ HX ′′′ → HX , and an auxiliary state τA′′′B′′′ ∈ S (HA′′′ ⊗
HB′′′ ) such that

ρAB = W (�A′B′ ⊗ τA′′′B′′′ )W †, (A3)

where W = WA ⊗ WB is the combined isometry.
Before proceeding to the proof, let us sketch how the three

formulations are connected. The equivalence between (i) and
(ii) is a direct consequence of Naimark’s dilation theorem. The
relation between (ii) and (iii), on the other hand, is more subtle
and deserves a brief discussion. If the isometry V in Eq. (A2)
happens to be a unitary, we can just move it to the other side to
obtain Eq. (A3) and the equivalence is trivial. However, if the
dimensions do not match, i.e., when dim(HX ) is not a multiple
of dim(HX ′ ), the isometry VX cannot be a unitary and cannot
be inverted. Then the solution is to invert it only on the support
of the state �X ′ ⊗ σX ′′ and the construction proving that (ii)
implies (iii) does precisely that. The proof of (iii) implies (ii)
proceeds analogously.

Proof. To see that (i) implies (ii) we construct Naimark’s
dilation of the extraction channels. This gives us Hilbert
spaces HA′′ and HB′′ and local isometries VA and VB such that

V ρABV † = ηA′B′A′′B′′

and trA′′B′′ ηA′B′A′′B′′ = �A′B′ . Since the reduced state on A′B′
is pure, it must be uncorrelated from the state on A′′B′′,
which concludes the proof. The opposite direction is easy: The
extraction channel corresponds to applying the isometry and
tracing out the auxiliary system.

To prove that (ii) implies (iii) we explicitly construct a new
Hilbert space, isometries, and an auxiliary state. Let us start
by showing a simple implication of Eq. (A2). Tracing out one
of the systems gives

VX ρXV †
X = �X ′ ⊗ σX ′′ .

If two operators are equal, their supports must be equal too.
Moreover, the support of a tensor product is the tensor product
of the supports. Let �X and �X ′′ be the projectors on the
supports of ρX and σX ′′ , respectively. Since �X ′ is full rank,
we obtain

VX �XV †
X = 1X ′ ⊗ �X ′′ . (A4)

We can now proceed to the construction. Consider a Hilbert
space HX ′′′ such that dim(HX ′′′ ) = tr(�X ′′ ) equipped with an
isometry TX : HX ′′′ → HX ′′ satisfying

TX T †
X = �X ′′ . (A5)

Define

τA′′′B′′′ := (T †
A ⊗ T †

B )σA′′B′′ (TA ⊗ TB). (A6)
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To see that τA′′′B′′′ is a valid state we need to check that it
is positive semidefinite and of unit trace. The first property
is clear (if A � 0, then X †AX � 0 for any X ), while for the
second property we first observe that

tr(τA′′′B′′′ ) = tr[(�A′′ ⊗ �B′′ )σA′′B′′ ]

and then recall that projecting on the local supports does not
affect the state, i.e.,

(�A′′ ⊗ �B′′ )σA′′B′′ = σA′′B′′ .

Define WX : HX ′ ⊗ HX ′′′ → HX as

WX := �XV †
X (1X ′ ⊗ TX ).

To see that WX is an isometry compute

W †
X WX = (1X ′ ⊗ T †

X )VX �XV †
X (1X ′ ⊗ TX )

= (1X ′ ⊗ T †
X )(1X ′ ⊗ �X ′′ )(1X ′ ⊗ TX )

= 1X ′ ⊗ (T †
X �X ′′TX ) = 1X ′ ⊗ 1X ′′′ ,

where in the first line we have used Eq. (A4), while the last
step relies on Eq. (A5). Finally, we must verify that Eq. (A3)
holds. Writing out the right-hand side gives

W (�A′B′ ⊗ τA′′′B′′′ )W † = (�A ⊗ �B)(V †
A ⊗ V †

B )(1A′B′ ⊗ TA ⊗ TB)(�A′B′ ⊗ τA′′′B′′′ )

× (1A′B′ ⊗ T †
A ⊗ T †

B )(VA ⊗ VB)(�A ⊗ �B)

= (�A ⊗ �B)(V †
A ⊗ V †

B )[�A′B′ ⊗ (TA ⊗ TB)τA′′′B′′′ (T †
A ⊗ T †

B )](VA ⊗ VB)(�A ⊗ �B).

We simplify the middle term using Eq. (A6),

(TA ⊗ TB)τA′′′B′′′ (T †
A ⊗ T †

B ) = (�A′′ ⊗ �B′′ )σA′′B′′ (�A′′ ⊗ �B′′ ) = σA′′B′′ .

Therefore,

W (�A′B′ ⊗ τA′′′B′′′ )W † = (�A ⊗ �B)(V †
A ⊗ V †

B )(�A′B′ ⊗ σA′′B′′ )(VA ⊗ VB)(�A ⊗ �B)

= (�A ⊗ �B)ρAB(�A ⊗ �B) = ρAB,

where the middle step is a direct consequence of Eq. (A2).
The proof of (iii) implies (ii) is again a construction. Anal-

ogously to the previous argument, we find that the projectors
on the supports �X and �X ′′′ satisfy

�X = WX (1X ′ ⊗ �X ′′′ )W †
X .

Consider a Hilbert space HX ′′ (dimension to be specified later)
and a linear map LX : HX ′′ → HX ′′′ satisfying

LX L†
X = �X ′′′ .

Let

σA′′B′′ := (L†
A ⊗ L†

B)τA′′′B′′′ (LA ⊗ LB)

and it is easy to check that σA′′B′′ is a valid state. Finally,
we need an isometry RX : HX → HX ′ ⊗ HX ′′ such that the
projectors RX (1X − �X )R†

X and 1X ′ ⊗ L†
X LX are orthogonal.

Finding such an isometry is possible if the Hilbert space
HX ′′ is of sufficiently high dimension. A simple dimension
counting argument implies that we must choose dim(HX ′′ )
to satisfy dim(HX ′ ) × dim(HX ′′ ) � dim(HX ). Define VX :
HX → HX ′ ⊗ HX ′′ as

VX = (1X ′ ⊗ L†
X )W †

X + RX (1X − �X ).

It is easy to verify that VX is an isometry and that the combined
isometry V := VA ⊗ VB satisfies Eq. (A2). �

2. Robust self-testing measures

The conditions discussed in the preceding section capture
the idea that a perfect copy of the target state can be extracted
from the real state. If we want to use these quantities in any
real-world situation, we need to introduce their approximate

versions. In the ideal case we require the existence of some
objects (e.g., channels or isometries) which render the equali-
ties (A1)–(A3) true. In the approximate case we will quantify
approximate satisfaction of these equalities by computing the
fidelity between the left- and right-hand sides and we will
maximize this value over all valid objects. Note that instead
of using the fidelity, we could use the trace norm as a measure
of distance, but since we are not aware of any robust results
involving the trace distance, we do not discuss it here.

The approximate satisfaction of the condition (A1) is quan-
tified by the extractability defined as

�(ρAB → �A′B′ ) := max
�A,�B

F ((�A ⊗ �B)(ρAB),�A′B′ ),

where the maximization is taken over all quantum channels
from A to A′ and B to B′, respectively. Basic properties of
extractability are discussed in Sec. II B.

The condition (A2) gives rise to a measure which we call
isometric fidelity, defined as

Fiso(ρAB → �A′B′ ) := sup
σA′′B′′

sup
V

F (V ρABV †,�A′B′ ⊗ σA′′B′′ ),

(A7)

where the supremum is taken over product isometries V =
VA ⊗ VB, where VX : HX → HX ′ ⊗ HX ′′ , and auxiliary states
σA′′B′′ ∈ S (HA′′ ⊗ HB′′ ). Perhaps surprisingly, this quantity
turns out to be equal to the extractability as long as the target
state is pure [82].

Proposition 3. Let ρAB be an arbitrary input state and �A′B′

be an arbitrary pure target state. Then

�(ρAB → �A′B′ ) = Fiso(ρAB → �A′B′ ).
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Proof. To see that the extractability is never smaller than the
isometric fidelity it suffices to realize that every local isometry
can be turned into an extraction channel by performing a
partial trace. Since the fidelity is nondecreasing under tracing
out, we immediately conclude that

�(ρAB → �A′B′ ) � Fiso(ρAB → �A′B′ ).

To show that this inequality holds as an equality we use
Uhlmann’s theorem. Let �A and �B be a pair of extraction
channels that achieves optimal fidelity in the definition of
extractability, i.e., if

ζA′B′ := (�A ⊗ �B)(ρAB),

then

�(ρAB → �A′B′ ) = F (ζA′B′ ,�A′B′ ).

Uhlmann’s theorem implies that the fidelity between two
mixed states equals the highest achievable fidelity between
their purifications and moreover that one of the purifications
can be fixed. In our case we pick a specific purification of
ζA′B′ . Let ρABE be a purification of ρAB, for X ∈ {A, B} let VX :
HX → HX ′ ⊗ HX ′′ be Naimark’s dilation of the extraction
channel �X , and finally let VAB := VA ⊗ VB. Then the state

ζA′B′A′′B′′E := (VAB ⊗ 1E )ρABE (V †
AB ⊗ 1E )

is a purification of ζA′B′ . By Uhlmann’s theorem there exists a
purification of �A′B′ , which we denote by γA′B′A′′B′′E , such that

F (ζA′B′ ,�A′B′ ) = F (ζA′B′A′′B′′E , γA′B′A′′B′′E ). (A8)

However, since �A′B′ is already pure, all its purifications are
of the form

γA′B′A′′B′′E = �A′B′ ⊗ γA′′B′′E

for some pure state γA′′B′′E . Since the fidelity is nondecreasing
under tracing out, we have

F (ζA′B′A′′B′′E ,�A′B′ ⊗ γA′′B′′E ) � F (ζA′B′A′′B′′ ,�A′B′ ⊗ γA′′B′′ )

� F (ζA′B′ ,�A′B′ ),

which together with Eq. (A8) implies that

F (ζA′B′A′′B′′ ,�A′B′ ⊗ γA′′B′′ ) = F (ζA′B′ ,�A′B′ ).

The left-hand side is a lower bound on the isometric fidelity,
whereas the right-hand side by construction equals the ex-
tractability, which concludes the proof. �

To finish our discussion of the isometric fidelity, let us
point out that in the literature one sometimes sees the isome-
tries in Eqs. (A2) and (A7) replaced by unitaries, but using
unitaries is strictly speaking not correct. For instance, the

unitary version of isometric fidelity has the unpleasant fea-
ture that it is not defined for all input states. The existence
of a unitary UA : HA → HA′ ⊗ HA′′ implies that dim(HA) =
dim(HA′ ) dim(HA′′ ). Since the dimension of the auxiliary
Hilbert space HA′′ must be an integer, unitarity requires that
the dimension of the Hilbert space HA is a multiple of the
dimension of the target Hilbert space HA′ , which does not
have to be the case. Clearly, a measure which is not defined for
all states is not suitable for the purpose of making self-testing
statements.

Finally, the condition (A3) gives rise to the Mayers-Yao
fidelity defined as

FMY(ρAB→�A′B′ ) := sup
σA′′B′′

sup
W

F (ρAB,W (�A′B′ ⊗ σA′′B′′ )W †),

where the supremum is taken over product isometries W =
WA ⊗ WB for WX : HX ′ ⊗ HX ′′ → HX and auxiliary states
σA′′B′′ ∈ S (HA′′ ⊗ HB′′ ). However, this quantity suffers from
the same problem: It is not defined for all states, e.g., when
dim(HA) < dim(HA′ ).

APPENDIX B: ROBUST SELF-TESTING OF
TWO-QUBIT STATES

In this Appendix we provide the details of the argument
discussed in Sec. IV. In the first section we give the definitions
of the extraction channels and compute all the operators
appearing in the operator inequality. In the second section we
discuss the numerical evidence supporting the conjecture.

1. Operator inequality

Let us start by writing down the Bell operator. Recall that
the observables of Alice and Bob are parametrized by

Ar := cos(a)X + (−1)r sin(a)Z,

Br := cos(b)X + (−1)r sin(b)Z

for r ∈ {0, 1}. For these observables the tilted CHSH operator
defined in Eq. (10) reads

Wα (a, b) = α[cos(a)X + sin(a)Z] ⊗ 1 + 2 cos a cos(b)X ⊗ X

+ 2 cos a sin(b)X ⊗ Z

+ 2 sin a cos(b)Z ⊗ X − 2 sin a sin(b)Z ⊗ Z.

The optimal violation is achieved for a∗ := π/4 and

b∗
α := arcsin

(√
4 − α2

8

)
. (B1)

The corresponding optimal state is given by

�α := 1

4

(
1 ⊗ 1 +

√
2α2

4 + α2

[
X + Z√

2
⊗ 1 + 1 ⊗ X

]
+ X + Z√

2
⊗ X +

√
4 − α2

4 + α2

[
Y ⊗ Y + X − Z√

2
⊗ Z

])
. (B2)

To see that this state is unitarily equivalent to cos θ |00〉 +
sin θ |11〉 for θ specified in Eq. (11) note that

sin 2θ =
√

4 − α2

4 + α2
, cos 2θ =

√
2α2

4 + α2
.

The extraction channel for Alice is precisely the channel used
in Ref. [56],

[�A(x)](ρ) := 1 + g(x)

2
ρ + 1 − g(x)

2
�(x)ρ�(x),
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where

�(x) :=
{

X if x ∈ [0, π/4]
Z if x ∈ (π/4, π/2]

and

g(x) := (1 +
√

2)(sin x + cos x − 1).

It is easy to check that x = π/4 gives the identity channel,
whereas x = 0 and x = π/2 correspond to full dephasing. The
channel of Bob has the same form except that the identity
channel should arise for the angle b∗

α defined in Eq. (B1).
Let us define the effective angle hα (x) as a piecewise linear
function which maps the interval [0, b∗

α] onto [0, π/4] and
[b∗

α, π/2] onto [π/4, π/2]:

hα (x) :=
{

π
4

x
b∗

α
if x ∈ [0, b∗

α]
π
2 − π

4
π−2x
π−2b∗

α
if x ∈ (b∗

α, π/2].

These definitions allow us to write the extraction channel of
Bob as

�B(x) := �A(hα (x)).

The operator Kα (a, b) is obtained by applying the dual chan-
nels to the ideal state given in Eq. (B2). Since the dephasing
channels are self-dual, we have

Kα (a, b) := [�A(a) ⊗ �B(b)](�α ).

The operator inequality (6) is equivalent to the operator

Tα (a, b) := Kα (a, b) − sαWα (a, b) − μα1

being positive semidefinite for

sα := (
√

8 + 2α2 + 2 + α)(3
√

8 + 2α2−√
4 − α2 − α

√
2)

4(2 − α)2
√

8 + 2α2
,

μα := 1 − sα

√
8 + 2α2.

Since the dephasing basis changes at a = π/4 and b = b∗
α ,

there are in principle four distinct cases that need to be consid-
ered. In the case of CHSH the presence of symmetries allows
one to reduce the analysis of the entire square ([0, π/2] ×
[0, π/2]) to a single quarter ([0, π/4] × [0, π/4]). In the tilted
case this symmetry is partially broken, but we still have

Tα (a, b) = UTα (π/2 − a, b)U †, (B3)

where

U := X + Z√
2

⊗ X. (B4)

This observation implies that it suffices to analyze the half of
the square corresponding to a ∈ [0, π/4].

2. Numerical evidence

Our goal is to gather evidence that the operator Tα (a, b)
is positive semidefinite for α ∈ [0, 2), a ∈ [0, π/4], and b ∈
[0, π/2]. For this purpose, we have generated a grid over the
parameter space in the following manner.

(a) We have chosen α in the range [0, 1.999] with a step
size of 0.001.

(b) We have discretized the angle of Alice by splitting the
interval [0, π/4] into 99 equally spaced intervals [ak, ak+1],
where a1 = 0, a100 = π/4, and 1 � k � 100. Similarly, for
the angle of Bob we have discretized [0, π/2] as intervals
[bm, bm+1] of equal length, with b1 = 0, b200 = π/2, and 0 �
m � 200. For fixed α, we thus obtain the grid {(ak, bm) | 1 �
k � 100, 1 � m � 200}.

Using the LINALG library from NUMPY (a scientific comput-
ing package for PYTHON), we have computed the eigenvalues
of Tα (a, b) at every point of the grid. We have found that
the smallest value equals −1.317 × 10−9 and occurs for α =
1.998. Our code can be freely accessed online [83].

APPENDIX C: CHSH VIOLATION DOES NOT IMPLY
NONTRIVIAL EXTRACTABILITY

In this Appendix we construct a state which violates the
CHSH inequality but whose singlet extractability does not ex-
ceed the trivial value of 1

2 . The proof hinges on two technical
propositions and since proving them within the main argument
would be rather distracting, let us use them without proofs.
Complete proofs can be found in Appendix C 2.

1. Argument

Consider a state ρXYAB acting on HX ⊗ HY ⊗ HA ⊗ HB

for HX ,HY ≡ C3 and HA,HB ≡ C2, where subsystems X
and A belong to Alice and subsystems Y and B belong to
Bob. The state is defined with respect to the CHSH operator
corresponding to the observables given in Eq. (12) which
reads

W =
2∑

x,y=0

|x〉〈x |X ⊗ |y〉〈y|Y ⊗ W xy
AB

for the two-qubit operators W xy
AB given by

x\y 0 1 2

0 2Z ⊗ Z 2Z ⊗ Z 2Z ⊗ Z
1 2Z ⊗ Z X ⊗ (−X + Z) + Z ⊗ (X + Z) 2X ⊗ Z
2 2Z ⊗ Z 2Z ⊗ X −2Z ⊗ Z

(C1)

We choose the state ρXYAB to be of the form

ρXYAB =
2∑

x,y=0

pxy|x〉〈x |X ⊗ |y〉〈y|Y ⊗ ρ
xy
AB
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for some probability distribution {pxy}2
x,y=0 and two-qubit

states ρ
xy
AB chosen to satisfy

〈
W xy

AB, ρ
xy
AB

〉 =
{

2
√

2 if x = y = 1
2 otherwise.

(C2)

The precise form of the states ρ
xy
AB will be specified later.

Recall that we refer to the point x = y = 1 as the center and
the remaining eight points as the frame. A simple calculation
shows that

β = 〈W, ρXYAB〉 = 2 + (2
√

2 − 2)p11, (C3)

i.e., the CHSH inequality is violated as long as p11 > 0. Our
goal is to prove that there exists a probability distribution
satisfying p11 > 0 and two-qubit states satisfying Eq. (C2)
such that the resulting state ρXYAB satisfies

�(ρXYAB → �+
A′B′ ) = 1

2 ,

where �+
A′B′ is a maximally entangled state of two qubits.

The quantity does not depend on which maximally entangled
state we choose and for this proof it is convenient to assume
that |�+〉 = (|00〉 + |11〉)/

√
2. By definition of extractabil-

ity, showing the existence of a suitable probability distribution
and two-qubit states is equivalent to showing that for all local
extraction channels �A,�B : L(C3 ⊗ C2) → L(C2) we have

F ((�A ⊗ �B)(ρXYAB),�+
A′B′ ) � 1

2 .

Since the registers X and Y are classical, instead of optimizing
over the most general channels from L(C3 ⊗ C2) to L(C2)
it suffices to consider channels which first read the classical
register and then apply a suitable qubit [L(C2) → L(C2)]
channel (see Lemma 2 for details). Let �x

A be the qubit
channel of Alice corresponding to the value of the classical
register X being x and similarly let �

y
B be the qubit channel

of Bob corresponding to Y having value y. Since the target
state is pure, the fidelity equals the inner product, which
implies

F ((�A ⊗ �B)(ρXYAB),�+
A′B′ )

= 〈(�A ⊗ �B)(ρXYAB),�+
A′B′ 〉

=
∑

xy

pxy
〈(
�x

A ⊗ �
y
B

)(
ρ

xy
AB

)
,�+

A′B′
〉
. (C4)

The intuition behind the proof goes as follows: There are no
extraction channels which perform well both on the frame
and in the center. We make this intuition rigorous in two
steps. The following proposition shows that if Alice and Bob
perform well on the frame, then the channels �1

A and �1
B

must significantly contract the Bloch sphere. Note that in the
argument below only six points of the frame are used (we
leave the remaining two points undefined).

Proposition 4. Let

ρ
xy
AB =

⎧⎪⎨
⎪⎩

|11〉〈11| if (x, y) = (0, 0)
1
2 (|00〉〈00| + |11〉〈11|) if (x, y) = (0, 1), (0, 2), (1, 0), (2, 0)
1
2 (|01〉〈01| + |10〉〈10|) if (x, y) = (2, 2).

For these six points for fixed extraction channels �x
A and �

y
B

define

εxy := 1
2 − 〈(

�x
A ⊗ �

y
B

)(
ρ

xy
AB

)
,�+

A′B′
〉
. (C5)

Note that εxy � 0, since the states ρ
xy
AB are separable. If

ωA := �1
A

(
12

2

)
, ωB := �1

B

(
12

2

)
,

then

λmin(ωA) � 4[8ε00 + 16(ε02 + ε20 + ε22) + 3ε10],

λmin(ωB) � 4[8ε00 + 16(ε02 + ε20 + ε22) + 3ε01].

In particular, we have λmin(ωA), λmin(ωB) � 248εwav for

εwav := 1
62 [8ε00 + 16(ε02 + ε20 + ε22) + 3ε01 + 3ε10].

The fact that the channels �1
A and �1

B map the center of
the Bloch sphere to a point close to the boundary means that
the input states are to a large extent erased. It is therefore
not surprising that applying such channels to a maximally
entangled state annihilates most of its entanglement.

Proposition 5. Let �A and �B be qubit channels such
that the smaller eigenvalues of the normalized qubit density
matrices

�A

(
12

2

)
, �B

(
12

2

)

are at most λ. Then, for any pair of maximally entangled two-
qubit states �1 and �2 we have

〈(�A ⊗ �B)(�1), �2〉 � 1
2 + 2λ.

These two propositions immediately imply the main result.
Proposition 6. Let

ρXYAB =
2∑

x,y=0

pxy|x〉〈x |X ⊗ |y〉〈y|Y ⊗ ρ
xy
AB,

where the states ρ
xy
AB corresponding to the frame are specified

in Proposition 4, the state ρ11
AB = � is some pure maximally

entangled state, and the probability distribution is given by

p00 = 4
31 (1 − v), p01 = p10 = 3

62 (1 − v),

p02 = p20 = p22 = 8
31 (1 − v), p11 = v, p12 = p21 = 0

for v = 1
597 . This state satisfies

�(ρXYAB → �+
A′B′ ) = 1

2 .

Proof. From Eq. (C4) we have

F ((�A ⊗ �B)(ρXYAB),�+
A′B′ )

=
∑

xy

pxy
〈(
�x

A ⊗ �
y
B

)(
ρ

xy
AB

)
,�+

A′B′
〉
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=
∑

(x,y)�=(1,1)

pxy
〈(
�x

A ⊗ �
y
B

)(
ρ

xy
AB

)
,�+

A′B′
〉

+ p11
〈(
�1

A ⊗ �1
B

)
(�),�+

A′B′
〉
.

The inner product in the first term can be written in terms of
εxy defined in Proposition 4. A direct calculation gives∑

(x,y)�=(1,1)

pxy
〈(
�x

A ⊗ �
y
B

)(
ρ

xy
AB

)
,�+

A′B′
〉

=
∑

(x,y)�=(1,1)

pxy

(
1

2
− εxy

)

= 1

2
(1 − v) − (1 − v)εwav = (1 − v)

(
1

2
− εwav

)

for εwav defined in Proposition 4. Combining Propositions 4
and 5 leads to〈(

�1
A ⊗ �1

B

)
(�),�+

A′B′
〉
� 1

2 + 596εwav.

Adding the two immediately yields

F ((�A ⊗ �B)(ρXYAB),�+
A′B′ )

� (1 − v)
(

1
2 − εwav

) + v
(

1
2 + 596εwav

)
= 1

2 + (597v − 1)εwav = 1
2 .

�
The value p11 = 1

597 plugged into Eq. (C3) gives the CHSH
violation of β ≈ 2.0014.

2. Proof details

In this section we prove Propositions 4 and 5 used in
the main argument. To do that we first need to prove three
auxiliary lemmas.

The first lemma is a triangle-type inequality for the inner
product of (finite-dimensional) density matrices.

Lemma 1. For finite-dimensional density matrices ρ0, ρ1,
and σ we always have

〈ρ0, ρ1〉 � 2(〈ρ0, σ 〉 + 〈ρ1, σ 〉) − 3.

In particular, if

〈ρ0, σ 〉 � 1 − δ0,

〈ρ1, σ 〉 � 1 − δ1,

then

〈ρ0, ρ1〉 � 1 − 2(δ0 + δ1).

Proof. The triangle inequality for the Schatten 2-norm (the
Frobenius norm) implies that

||ρ0 − ρ1||2 � ||ρ0 − σ ||2 + ||σ − ρ1||2,
which can be written as√

〈ρ0, ρ0〉 + 〈ρ1, ρ1〉 − 2〈ρ0, ρ1〉
�

√
〈ρ0, ρ0〉 + 〈σ, σ 〉 − 2〈ρ0, σ 〉

+
√

〈ρ1, ρ1〉 + 〈σ, σ 〉 − 2〈ρ1, σ 〉.
Since both sides are non-negative, we can square the inequal-
ity to obtain

−〈ρ0, ρ1〉 � 〈σ, σ 〉 − 〈ρ0, σ 〉 − 〈ρ1, σ 〉 +
√

(〈ρ0, ρ0〉 + 〈σ, σ 〉 − 2〈ρ0, σ 〉)(〈ρ1, ρ1〉 + 〈σ, σ 〉 − 2〈ρ1, σ 〉).

The fact that for an arbitrary density matrix τ we have
〈τ, τ 〉 � 1 gives

−〈ρ0, ρ1〉 � 1 − 〈ρ0, σ 〉 − 〈ρ1, σ 〉
+ 2

√
(1 − 〈ρ0, σ 〉)(1 − 〈ρ1, σ 〉).

We bound the last term using the mean inequality
√

ab � (a +
b)/2, which leads to

−〈ρ0, ρ1〉 � 3 − 2(〈ρ0, σ 〉 + 〈ρ1, σ 〉).
�

The second lemma formalizes the intuition that an arbitrary
channel acting jointly on a classical and quantum register can
be replaced by a channel that reads the classical register and
acts on the quantum register accordingly.

Lemma 2. Let HC , HQ, and HA be Hilbert spaces of
dimensions dC , dQ, and dA, respectively. Let {|e j〉}dC

j=1 be an
orthonormal basis of HC and we say that RCQ is a classical-
quantum operator acting on HC ⊗ HQ if it can be written as

RCQ =
∑

j

|e j〉〈e j | ⊗ S j (C6)

for some linear operators S j ∈ L(HQ). Then, for an arbitrary
channel � : L(HC ⊗ HQ) → L(HA) there exists a collection

of dC channels � j : L(HQ) → L(HA) such that for all opera-
tors of the form (C6) we have

�(RCQ) =
∑

j

� j (S j ). (C7)

Proof. We define the channel � j through its action on an
arbitrary operator X ∈ L(HQ). Let

� j (X ) := �(|e j〉〈e j | ⊗ X ),

which ensures that � j is completely positive and trace pre-
serving. The equality (C7) holds by construction. �

The last lemma shows that if a channel maps the maximally
mixed state to a state which is close to being pure, then this
channel must contract all the Pauli observables.

Lemma 3. Let � be a qubit quantum channel, let

ω := �

(
12

2

)
,

and suppose that spec(ω) = {λ, 1 − λ} for λ ∈ [0, 1/2]. Let �

be a 2 × 2 Hermitian operator satisfying �2 = 1 and tr � = 0.
Then

−2
√

λ12 � �(�) � 2
√

λ12.
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Proof. Since the quantum channel is a positive map, we
have �(12 ± �) � 0 or, equivalently, −2ω � �(�) � 2ω.
We start by writing both operators in the eigenbasis of ω,

ω =
(

λ

1 − λ

)
, �(�) =

(
t y
y∗ −t

)

for some t ∈ R and y ∈ C. Note that we have implicitly used
the fact that �(�) is Hermitian and traceless. The condition
�(�) � −2ω reads(

2λ + t y
y∗ 2 − 2λ − t

)
� 0

and implies that

(2λ + t )(2 − 2λ − t ) − |y|2 � 0.

Similarly, the condition �(�) � 2ω leads to

(2λ − t )(2 − 2λ + t ) − |y|2 � 0.

Adding these two conditions gives

t2 + |y|2 � 4λ(1 − λ) � 4λ.

As the eigenvalues of �(�) are easily seen to be ±
√

t2 + |y|2,
the claim follows directly from the last inequality. �

Equipped with these three auxiliary lemmas, we are ready
to tackle the two propositions used in the main argument.

Proof of Proposition 4. The proof consists of three
steps. We first consider the four corner points, i.e., (x, y) ∈
{(0, 0), (0, 2), (2, 0), (2, 2)}, and show that the channels �0

A
and �0

B map the entire Bloch sphere to a small region close
to the boundary. In the second step we consider the points
(x, y) ∈ {(0, 1), (1, 0)} to show that the channels �1

A and �1
B

have the same property. In the last step we compute an explicit
bound on the eigenvalues of ωA and ωB.

For b ∈ {0, 1} and x, y ∈ {0, 1, 2} define

σ x
b := �x

A(|b〉〈b|),
τ

y
b := [

�
y
B(|b〉〈b|)]T

,

which implies that〈(
�x

A ⊗ �
y
B

)
(|b〉〈b| ⊗ |b′〉〈b′ |),�+

A′B′
〉

= 〈
�x

A(|b〉〈b|) ⊗ �
y
B(|b′〉〈b′ |),�+

A′B′
〉

= 1
2

〈
σ x

b , τ
y
b′
〉
.

Therefore, Eq. (C5) imposes constraints on the inner products
between the operators σ x

b and τ
y
b . Considering points (x, y) =

(0, 0), (0, 2), (2, 0), (2, 2) gives

〈
σ 0

1 , τ 0
1

〉 = 1 − 2ε00, (C8)〈
σ 0

0 , τ 2
0

〉 + 〈
σ 0

1 , τ 2
1

〉 = 2 − 4ε02, (C9)〈
σ 2

0 , τ 0
0

〉 + 〈
σ 2

1 , τ 0
1

〉 = 2 − 4ε20, (C10)〈
σ 2

0 , τ 2
1

〉 + 〈
σ 2

1 , τ 2
0

〉 = 2 − 4ε22. (C11)

Plugging the upper bound 〈σ x
b , τ

y
b′ 〉 � 1 into Eq. (C9) imme-

diately gives 〈
σ 0

1 , τ 2
1

〉
� 1 − 4ε02,

which combined with Eq. (C8) by Lemma 1 gives〈
τ 0

1 , τ 2
1

〉
� 1 − 4(ε00 + 2ε02). (C12)

Similarly, Eqs. (C10) and (C11) imply〈
σ 2

0 , τ 0
0

〉
� 1 − 4ε20,〈

σ 2
0 , τ 2

1

〉
� 1 − 4ε22,

which gives 〈
τ 0

0 , τ 2
1

〉
� 1 − 8(ε20 + ε22).

Combining this with Eq. (C12) gives〈
τ 0

0 , τ 0
1

〉
� 1 − 8[ε00 + 2(ε02 + ε20 + ε22)], (C13)

which concludes the first step of the proof. This lower bound
implies that the states τ 0

0 and τ 0
1 are close to each other

and moreover that they are close to being pure. Since these
two states result from applying the channel �0

B to two pure
orthogonal states, we conclude that the channel must shrink
the entire Bloch sphere to a small region close to the boundary.

Considering the point (x, y) = (1, 0) gives〈
σ 1

0 , τ 0
0

〉 + 〈
σ 1

1 , τ 0
1

〉 = 2 − 4ε10.

Define a, b � 0 such that

〈
σ 1

0 , τ 0
0

〉 = 1 − a, (C14)〈
σ 1

1 , τ 0
1

〉 = 1 − b, (C15)

which implies that a + b = 4ε10. Applying the inner-product
inequality proven in Lemma 1 to Eqs. (C13)–(C15) gives〈

σ 1
0 , σ 1

1

〉
� 1 − 32[ε00 + 2(ε02 + ε20 + ε22)] − 4a − 2b

or 〈
σ 1

0 , σ 1
1

〉
� 1 − 32[ε00 + 2(ε02 + ε20 + ε22)] − 2a − 4b,

depending on the order. Averaging over these two bounds
gives〈

σ 1
0 , σ 1

1

〉
� 1 − 32[ε00 + 2(ε02 + ε20 + ε22)] − 3a − 3b

= 1 − 32[ε00 + 2(ε02 + ε20 + ε22)] − 12ε10

= 1 − 4[8ε00 + 16(ε02 + ε20 + ε22) + 3ε10],

which concludes the second step of the proof.
The density matrix ωA defined in the proposition is given

by

ωA = �1
A

(
12

2

)
= 1

2

(
σ 1

0 + σ 1
1

)
.

Clearly, tr ωA = 1 and

tr ω2
A = 1

4

[〈
σ 1

0 , σ 1
0

〉 + 〈
σ 1

1 , σ 1
1

〉 + 2
〈
σ 1

0 , σ 1
1

〉]
= 1

4

[〈
σ 1

0 , σ 1
0

〉 + 〈
σ 1

1 , σ 1
1

〉 − 2
〈
σ 1

0 , σ 1
1

〉] + 〈
σ 1

0 , σ 1
1

〉
= 1

4

[〈
σ 1

0 − σ 1
1 , σ 1

0 − σ 1
1

〉] + 〈
σ 1

0 , σ 1
1

〉
�

〈
σ 1

0 , σ 1
1

〉
.

We take advantage of the fact that for 2 × 2 Hermitian matri-
ces we have [tr(M )]2 = tr(M2) + 2 det(M ). If λ is the smaller
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eigenvalue of ωA, then

λ � 2λ(1 − λ) = 2 det(ωA)

= [tr(ωA)]2 − tr
(
ω2

A

) = 1 − tr
(
ω2

A

)
� 1 − 〈

σ 1
0 , σ 1

1

〉
� 4[8ε00 + 16(ε02 + ε20 + ε22) + 3ε10],

which concludes the last step of the proof of the first state-
ment. The proof of the second statement is essentially the
same. From Eqs. (C8) and (C10) we obtain〈

σ 0
1 , σ 2

1

〉
� 1 − 4(ε00 + 2ε20),

whereas Eqs. (C9) and (C11) imply〈
σ 0

0 , σ 2
1

〉
� 1 − 8(ε02 + ε22).

Combining these yields〈
σ 0

0 , σ 0
1

〉
� 1 − 8[ε00 + 2(ε02 + ε20 + ε22)]

and by adding the point (x, y) = (0, 1) we arrive at〈
τ 1

0 , τ 1
1

〉
� 1 − 4[8ε00 + 16(ε02 + ε20 + ε22) + 3ε01].

Finally, we note that ωT
B = (τ 1

0 + τ 1
1 )/2, but since the trans-

pose does not affect the spectrum, the final calculation is
precisely the same. �

Proof of Proposition 5. Since the statement is invariant
under local unitaries, we can without loss of generality assume
that �1 is the usual maximally entangled state, i.e.,

�1 = 1
4 (1 ⊗ 1 + X ⊗ X − Y ⊗ Y + Z ⊗ Z).

Note that �1 can be written as

�1 = τ + 1
4 (X ⊗ X + Z ⊗ Z),

where τ = (1 ⊗ 1 − Y ⊗ Y)/4. Since τ is a separable state,
we have

〈(�A ⊗ �B)(τ ), �2〉 � 1
2 .

To bound the other two terms we use Lemma 3, which in
particular implies that

�A(X) ⊗ �B(X) � 4λ 14.

Therefore,

〈�A(X) ⊗ �B(X), �2〉 � 4λ.

The same argument applied to �A(Z) ⊗ �B(Z) concludes the
proof. �
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