769 research outputs found

    Positive electrodes of nickel-cadmium batteries

    Get PDF
    Ni hydroxide sintered electrodes which are filled electrochemically are superior to chemically treated electrodes. In the electrochemical process, the hydroxide grows on the Ni grains and possesses a well-defined porous structure. Diffusion and conducting mechanisms are therefore facilitated

    Trait specialization, innovation and the evolution of culture in fluctuating environments

    No full text

    Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes

    Get PDF
    Light scattering by single, inhomogeneous mineral dust particles was simulated based on shapes and compositions derived directly from measurements of real dust particles instead of using a mathematical shape model. We demonstrate the use of the stereogrammetric shape retrieval method in the context of single-scattering modelling of mineral dust for four different dust types – all of them inhomogeneous – ranging from compact, equidimensional shapes to very elongated and aggregate shapes. The three-dimensional particle shapes were derived from stereo pairs of scanning-electron microscope images, and inhomogeneous composition was determined by mineralogical interpretation of localized elemental information based on energy-dispersive spectroscopy. Scattering computations were performed for particles of equal-volume diameters, from 0.08 μm up to 2.8 μm at 550 nm wavelength, using the discrete-dipole approximation. Particle-to-particle variation in scattering by mineral dust was found to be quite considerable and was not well reproduced by simplified shapes of homogeneous spheres, spheroids, or Gaussian random spheres. Effective-medium approximation results revealed that particle inhomogeneity should be accounted for even for small amounts of absorbing media (here up to 2% of the volume), especially when considering scattering by inhomogeneous particles at size parameters 3<<i>x</i><8. When integrated over a log-normal size distribution, the linear depolarization ratio and single-scattering albedo were also found to be sensitive to inhomogeneity. The methodology applied is work-intensive and the light-scattering method used quite limited in terms of size parameter coverage. It would therefore be desirable to find a sufficiently accurate but simpler approach with fewer limitations for single-scattering modelling of dust. For validation of such a method, the approach presented here could be used for producing reference data when applied to a suitable set of target particles

    Ультрафлокуляция – как метод повышения эффективности процесса извлечения тонкодисперсного угля из хвостов обогащения

    Get PDF
    На прикладі хвостів вуглезбагачення ОФ "Распадська" (р. Междуріченськ Кемеровської області, РФ) встановлено, що використання ультрафлокулярної обробки дає нижче-наступні переваги при витяганні тонкодисперсного вугілля методом седиментації в радіальному згущувачі: • зниження витрати флокулянтів – в 2,5-3,5 разу. • збільшення витягання вугільного концентрату з хвостів на 23…26%. • зменшення зольності концентрату, вилученого з хвостів з 18 до 12%. • зменшення вологості прес-фільтраційного кека концентрату, вилученого з хвостів з 40 до 35%.На примере хвостов углеобогащения ОФ "Распадская" (г. Междуреченск Кемеровской области, РФ) установлено, что использование ультрафлокулярной обработки дает нижеследующие преимущества при извлечении тонкодисперсного угля методом седиментации в радиальном сгустителе: • снижение расхода флокулянтов – в 2,5-3,5 раза. • увеличение извлечения угольного концентрата из хвостов на 23…26%. • уменьшение зольности концентрата, извлекаемого из хвостов с 18 до 12%. • уменьшение влажности пресс-фильтрационного кека концентрата, извлекаемого из хвостов с 40 до 35%

    Regional Saharan dust modelling during the SAMUM 2006 campaign

    Get PDF
    The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers

    Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010

    Get PDF
    © Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe
    corecore