23 research outputs found
Predictive Power of Air Travel and Socio-Economic Data for Early Pandemic Spread
Controlling the pandemic spread of newly emerging diseases requires rapid, targeted allocation of limited resources among nations. Critical, early control steps would be greatly enhanced if the key risk factors can be identified that accurately predict early disease spread immediately after emergence.Here, we examine the role of travel, trade, and national healthcare resources in predicting the emergence and initial spread of 2009 A/H1N1 influenza. We find that incorporating national healthcare resource data into our analyses allowed a much greater capacity to predict the international spread of this virus. In countries with lower healthcare resources, the reporting of 2009 A/H1N1 cases was significantly delayed, likely reflecting a lower capacity for testing and reporting, as well as other socio-political issues. We also report substantial international trade in live swine and poultry in the decade preceding the pandemic which may have contributed to the emergence and mixed genotype of this pandemic strain. However, the lack of knowledge of recent evolution of each H1N1 viral gene segment precludes the use of this approach to determine viral origins.We conclude that strategies to prevent pandemic influenza virus emergence and spread in the future should include: 1) enhanced surveillance for strains resulting from reassortment in traded livestock; 2) rapid deployment of control measures in the initial spreading phase to countries where travel data predict the pathogen will reach and to countries where lower healthcare resources will likely cause delays in reporting. Our results highlight the benefits, for all parties, when higher income countries provide additional healthcare resources for lower income countries, particularly those that have high air traffic volumes. In particular, international authorities should prioritize aid to those poorest countries where both the risk of emerging infectious diseases and air traffic volume is highest. This strategy will result in earlier detection of pathogens and a reduction in the impact of future pandemics
Strategic engagement and librarians
The future of the academic book is a strategic engagement issue for librarians. Books might not be stored in or purchased for university libraries; they might not even exist in a physical form. How will academic books be organised and accessed in the future, if they are not in libraries? How will librarians at universities engage academic researchers in strategic conversations about the future of their academic books? This chapter argues that conversations between librarians and academic book authors about the future are more important than ever. It puts the current challenges in context, using data from the Research Excellence Framework and the University of Nottingham library catalogue, identifying the strategic role of librarians in shaping the future of the
academic book through strategic engagement
Experimental testing of reciprocal effects of nutrition and parasitism in wild black capuchin monkeys
Nutritional stress may predispose individuals to infection, which in turn can have further detrimental effects on physical condition, thus creating an opportunity for reciprocal effects between nutrition and parasitism. Little experimental investigation has been conducted on this "vicious circle" hypothesis in wild animals, especially under natural conditions. We evaluated the reciprocal effects of nutritional status and parasitism using an experimental approach in two groups of wild black capuchin monkeys (Sapajus nigritus). Across two consecutive winters, we collected faecal samples from identified capuchins to determine presence and load of gastrointestinal helminthes, and measured individual body mass as a proxy of physical condition. Food availability was manipulated by provisioning monkeys with bananas, and parasite burdens by applying anti-parasitic drugs to selected individuals. We found no effect of anti-parasitic drugs on physical condition, but parasite loads decreased in response to high levels of food availability. Our results represent the first experimental evidence that the nutritional status may drive parasite dynamics in a primate.Fil: Agostini, Ilaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina. Centro de Investigaciones del Bosque Atlántico; ArgentinaFil: Vanderhoeven, Ezequiel Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina. Ministerio de Salud. Instituto Nacional de Medicina Tropical; Argentina. Centro de Investigaciones del Bosque Atlántico; ArgentinaFil: Di Bitetti, Mario Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentina. Centro de Investigaciones del Bosque Atlántico; ArgentinaFil: Beldomenico, Pablo Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Ciencias Veterinarias del Litoral; Argentina. Laboratorio de Ecología de Enfermedades; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; Argentin
Trophic Shifts of a Generalist Consumer in Response to Resource Pulses
Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore) to the diets of the White-footed mouse (Peromyscus leucopus) receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses
Does the early frog catch the worm? Disentangling potential drivers of a parasite age–intensity relationship in tadpoles
The manner in which parasite intensity and aggregation varies with host age can provide insights into parasite dynamics and help identify potential means of controlling infections in humans and wildlife. A significant challenge is to distinguish among competing mechanistic hypotheses for the relationship between age and parasite intensity or aggregation. Because different mechanisms can generate similar relationships, testing among competing hypotheses can be difficult, particularly in wildlife hosts, and often requires a combination of experimental and model fitting approaches. We used field data, experiments, and model fitting to distinguish among ten plausible drivers of a curvilinear age–intensity relationship and increasing aggregation with host age for echinostome trematode infections of green frogs. We found little support for most of these proposed drivers but did find that the parsimonious explanation for the observed age–intensity relationship was seasonal exposure to echinostomes. The parsimonious explanation for the aggregated distribution of parasites in this host population was heterogeneity in exposure. A predictive model incorporating seasonal exposure indicated that tadpoles hatching early or late in the breeding season should have lower trematode burdens at metamorphosis, particularly with simulated warmer climates. Application of this multi-pronged approach (field surveys, lab experiments, and modeling) to additional parasite–host systems could lead to discovery of general patterns in the drivers of parasite age–intensity and age–distribution relationships
Is Promiscuity Associated with Enhanced Selection on MHC-DQα in Mice (genus Peromyscus)?
Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQα locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQα locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu
A community-sourced glossary of open scholarship terms
Supplementary Information: This list of terms represents the ‘Open Scholarship Glossary 1.0’ (available at: https://forrt.org/glossary/. Glossary available under a CC BY NC SA 4.0 license at: https://static-content.springer.com/esm/art%3A10.1038%2Fs41562-021-01269-4/MediaObjects/41562_2021_1269_MOESM1_ESM.pdf).https://static-content.springer.com/esm/art%3A10.1038%2Fs41562-021-01269-4/MediaObjects/41562_2021_1269_MOESM1_ESM.pd