73 research outputs found

    How other Europeans assess the dangers of leaving the EU

    Get PDF
    Public support for the EU rose after the referendum, while Jean-Claude Juncker has painted a starry picture of the Union's prospects without Britain. In effect, writes Catherine E De Vries, the UK is a guinea pig for Eurosceptics on the rest of the continent. Consequently, national leaders have every incentive to make Brexit as arduous as possible for the UK. Parties like the AfD are watching

    Tak perlu burukkan 1MDB

    Get PDF
    Kota Bharu Pemimpim Pakatan Harapan tidak seharusnya membuang masa dengan terlalu memfokuskan 1MDB kerana ia tidak banyak membantu kemenangannya dalam PRU14

    Glopl, a global data base on pollen limitation of plant reproduction

    Get PDF
    Plant reproduction relies on transfer of pollen from anthers to stigmas, and the majority of flowering plants depend on biotic or abiotic agents for this transfer. A key metric for characterizing if pollen receipt is insufficient for reproduction is pollen limitation, which is assessed by pollen supplementation experiments. In a pollen supplementation experiment, fruit or seed production by flowers exposed to natural pollination is compared to that following hand pollination either by pollen supplementation (i.e. manual outcross pollen addition without bagging) or manual outcrossing of bagged flowers, which excludes natural pollination. The GloPL database brings together data from 2969 unique pollen supplementation experiments reported in 927 publications published from 1981 to 2015, allowing assessment of the strength and variability of pollen limitation in 1265 wild plant species across all biomes and geographic regions globally. The GloPL database will be updated and curated with the aim of enabling the continued study of pollen limitation in natural ecosystems and highlighting significant gaps in our understanding of pollen limitation.<p>Correction in: Scientific Data, vol. 6, article number: 2. DOI: 10.1038/s41597-018-0006-1</p

    An endo-siRNA derived from tandem inverted B4 SINEs.

    No full text
    <p>(A) Alignment of reads to the mouse genome (mm9) and genomic conformation of the two inverted B4 SINEs. The green box indicates the identified siRNAs uniquely mapped to this SINE. The dark black line represents the well-conserved SINE compared to the consensus, while less conserved SINEs are in light gray. The symbol “+” and “−” indicate the orientation of the SINEs. (B) Folding structure of a transcript comprising the two B4 SINEs with the novel endo-siRNA annotated in green.</p

    Thirty novel miRNAs in the MHV68 or mouse genomes.

    No full text
    a<p>The number of reads perfectly mapping to pre-miRNA hairpin sequences in all samples.</p>b<p>The rank of miRNAs relative to all known and novel murine miRNAs.</p>*<p>The rank of miRNAs relative to all the MHV68 miRNAs.</p

    Noncanonical MicroRNAs and Endogenous siRNAs in Lytic Infection of Murine Gammaherpesvirus

    Get PDF
    <div><p>MicroRNA (miRNA) and endogenous small interfering RNA (endo-siRNA) are two essential classes of small noncoding RNAs (sncRNAs) in eukaryotes. The class of miRNA is diverse and there exist noncanonical miRNAs that bypass the canonical miRNA biogenesis pathway. In order to identify noncanonical miRNAs and endo-siRNAs responding to virus infection and study their potential function, we sequenced small-RNA species from cells lytically infected with murine gammaherpesvirus 68 (MHV68). In addition to three novel canonical miRNAs in mouse, two antisense miRNAs in virus and 25 novel noncanonical miRNAs, including miRNAs derived from transfer RNAs, small nucleolar RNAs and introns, in the host were identified. These noncanonical miRNAs exhibited features distinct from that of canonical miRNAs in lengths of hairpins, base pairings and first nucleotide preference. Many of the novel miRNAs are conserved in mammals. Besides several known murine endo-siRNAs detected by the sequencing profiling, a novel locus in the mouse genome was identified to produce endo-siRNAs. This novel endo-siRNA locus is comprised of two tandem inverted B4 short interspersed nuclear elements (SINEs). Unexpectedly, the SINE-derived endo-siRNAs were found in a variety of sequencing data and virus-infected cells. Moreover, a murine miRNA was up-regulated more than 35 fold in infected than in mock-treated cells. The putative targets of the viral and the up-regulated murine miRNAs were potentially involved in processes of gene transcription and protein phosphorylation, and localized to membranes, suggesting their potential role in manipulating the host basal immune system during lytic infection. Our results extended the number of noncanonical miRNAs in mammals and shed new light on their potential functions of lytic infection of MHV68.</p> </div

    Two novel MHV68 antisense miRNAs.

    No full text
    <p>(A) Hairpin structures of miR-M1-8-AS and miR-M1-10-AS with the miRNAs annotated in red on both arms. (B) Sequence similarities between sense and antisense precursors of miR-M1-8-AS and miR-M1-10-AS where the miRNA sequences are annotated in red. The color bar on the last line shows the similarity between this pair of sense and antisense miRNAs.</p

    A murine miRNA, sno-miR-#3, derived from snoRNA Snora7a.

    No full text
    <p>(A) Folding structure of the snoRNA carrying a hairpin shaped structure. The miRNAs (annotated in red) on 5′ and 3′ arm form a duplex with 1-nt 3′ overhang. (B) Length distribution of the total reads mapped to the snoRNA, which peaked at 22-nt. (C) snoRNA gene annotated in Ensembl and RefSeq annotations. Snora7a resides within an intron of Rpl32. The red arrow indicates the orientation of the snoRNA gene. The conservation score by PhyloP shows how well each base pair is conserved in mammals. (D) Alignment of reads representing miRNA sequences (red) and snoRNA fragments (blue), which appeared in Dicer- and Dgrc8-knockout mice.</p

    Novel and known murine endo-siRNAs represented in 9 sequencing datasets including MHV68-infected (MHV68), mock-treated murine cells (mock; GSE36639); mouse embryonic stem cell (mESC; GSE12521); newborn embryo (nb), 7.5-, 9.5-, and 12.5- day point embryo cells (e7p5 etc.), testes (GSE20384) and oocyte (GSE10364).

    No full text
    <p>Read counts were normalized across the samples.</p>a<p>newly identified siRNA.</p>b<p>siRNAs annotated in the previous study <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047863#pone.0047863-Babiarz1" target="_blank">[12]</a>.</p

    Features of canonical and noncanonical miRNAs.

    No full text
    <p>(A) A diagram marks the locations of the five regions for canonical miRNA hairpins: I, loop-distal (5′ arm); II, miRNA-5p; III, loop-proximal; IV, miRNA-3p; V, loop-distal (3′ arm). Noncanonical miRNA hairpins miss I and V loop-distal regions. (B) The average length of hairpins for canonical miRNAs, snoRNA-, tRNA-derived miRNAs, miRtrons (typical and tailed) and MHV68-encoded miRNAs (C) The percentage of the number of unpaired bases at each position (from 5′ to 3′) for canonical (green) and noncanonical (blue) miRNAs, respectively. (D) First nucleotide percentage of total reads (upper) in MHV68 data mapped to conserved, MHV68 encoded, snoRNA-derived miRNAs and shRNAs. Percentages of unique miRNAs are presented in the lower part, respectively.</p
    corecore