32 research outputs found

    Biomass and Stored Carbohydrate Compensation after Above-Ground Biomass Removal in a Perennial Herb: Does Environmental Productivity Play a Role?

    Get PDF
    Many plant species are able to tolerate severe disturbance leading to removal of a substantial portion of the body by resprouting from intact or fragmented organs. Resprouting enables plants to compensate for biomass loss and complete their life cycles. The degree of disturbance tolerance, and hence the ecological advantage of damage tolerance (in contrast to alternative strategies), has been reported to be affected by environmental productivity. In our study, we examined the influence of soil nutrients (as an indicator of environmental productivity) on biomass and stored carbohydrate compensation after removal of aboveground parts in the perennial resprouter Plantago lanceolata. Specifically, we tested and compared the effects of nutrient availability on biomass and carbon storage in damaged and undamaged individuals. Damaged plants of P. lanceolata compensated neither in terms of biomass nor overall carbon storage. However, whereas in the nutrient-poor environment, root total non-structural carbohydrate concentrations (TNC) were similar for damaged and undamaged plants, in the nutrient-rich environment, damaged plants had remarkably higher TNC than undamaged plants. Based on TNC allocation patterns, we conclude that tolerance to disturbance is promoted in more productive environments, where higher photosynthetic efficiency allows for successful replenishment of carbohydrates. Although plants under nutrient-rich conditions did not compensate in terms of biomass or seed production, they entered winter with higher content of carbohydrates, which might result in better performance in the next growing season. This otherwise overlooked compensation mechanism might be responsible for inconsistent results reported from other studies

    Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging

    Get PDF
    Species extinctions undermine ecosystem functioning, with the loss of a small subset of functionally important species having a disproportionate impact. However, little is known about the effects of species loss on plant-pollinator interactions. We addressed this issue in a field experiment by removing the plant species with the highest visitation frequency, then measuring the impact of plant removal on flower visitation, pollinator effectiveness and insect foraging in several sites. Our results show that total visitation decreased exponentially after removing 1–4 most visited plants, suggesting that these plants could benefit co-occurring ones by maintaining high flower visitor abundances. Although we found large variation among plant species, the redistribution of the pollinator guild affected mostly the other plants with high visitor richness. Also, the plant traits mediated the effect of removal on flower visitation; while visitation of plants which had smaller inflorescences and more sugar per flower increased after removal, flower visitors did not switch between flower shapes and visitation decreased mostly in plants visited by many morpho-species of flower visitors. Together, these results suggest that the potential adaptive foraging was constrained by flower traits. Moreover, pollinator effectiveness fluctuated but was not directly linked to changes of flower visitation. In conclusion, it seems that the loss of generalist plants alters plant-pollinator interactions by decreasing pollinator abundance with implications for pollination and insect foraging. Therefore, generalist plants have high conservation value because they sustain the complex pattern of plant-pollinator interactions

    Flying between raindrops : strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon

    Get PDF
    1. Although seasonality in the tropics is often less pronounced than in temperate areas, tropical ecosystems show seasonal dynamics as well. Nevertheless, individual tropical insects’ phenological patterns are still poorly understood, especially in the Afrotropics. To fill this gap, we investigated biodiversity patterns of Lepidoptera communities at three rainforest localities in the foothills of Mount Cameroon, West Africa, one of the wettest places in the world. 2. Our multi-taxa approach covered six lepidopteran groups (fruit-feeding butterflies and moths, the families Sphingidae, Saturniidae, and Eupterotidae, and the subfamily Arctiinae of Erebidae) with diverse life strategies. We sampled adults of the focal groups in three distinct seasons. Our sampling included standardised bait-trapping (80 traps exposed for ten days per locality and season) and attraction by light (six full nights per locality and season). 3. Altogether, our dataset comprised 20,576 specimens belonging to 559 (morpho)species of the focal groups. The biodiversity of Lepidoptera generally increased in the high-dry season, and either increased (fruit-feeding moths, Arctiinae, Saturniidae) or decreased (butterflies, Sphingidae) in the transition to the wet season in particular groups. Simultaneously, we revealed a strong species turnover of fruit-feeding Lepidoptera and Arctiinae among the seasons, indicating relatively high specialisation of these communities for particular seasons. 4. Such temporal specialisation can make the local communities of butterflies and moths especially sensitive to the expected seasonal perturbations caused by the global change. Because of the key role of Lepidoptera across trophic levels, such changes in their communities could strengthen this impact on entire tropical ecosystems

    Data from: Sunbird hovering behavior is determined by both the forager and resource plant

    No full text
    The long-standing paradigm that pollination systems adapted to hovering birds evolved only in the New World was recently challenged by the discovery of hovering pollination by Old World specialized passerine pollinators. This raises the possibility that hovering pollination may evolve more easily than previously believed, given sufficient selective pressure on plant traits, on nectarivory, or both. We observed foraging behavior by the sunbird Cyanomitra oritis at flowers of the native Old World plant Impatiens sakeriana. We measured the length of pedicels and peduncles (PedPed length), which can make the flowers difficult to reach while the bird perches on the stem, and determined if it influenced sunbird hovering or perching at a flower. Detailed analyses of video recordings showed that sunbirds only hovered at flowers with a long PedPed, whereas they employed both foraging modes when an adequate perch was available. A hovering sunbird could deplete nectar in a shorter time than a perching one. The frequency of visits was not greater at flowers with longer PedPed or with more open I. sakeriana flowers in the vicinity. Our study provides evidence that sunbird behavior does not follow simple energetic models, and that some sunbird pollination systems in the Old World resemble highly specialized hummingbird systems in the New World much more than expected, especially the overall adaptation of the system to bird hovering

    Sunbird behaviour at flowers

    No full text
    Sunbird behaviour manner while feeding at flowers according to the plant traits

    Generalization versus Specialization in Pollination Systems: Visitors, Thieves, and Pollinators of <i>Hypoestes aristata</i> (Acanthaceae)

    Get PDF
    <div><p>Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of <i>Hypoestes aristata</i> in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on <i>H. aristata’</i>s reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee <i>Xylocopa</i> cf. <i>inconstans</i> was both the most frequent and the most effective pollinator; (iii) the honey bee <i>Apis mellifera</i> acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between <i>H. aristata</i> and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.</p> </div
    corecore