136 research outputs found
Numerical simulations of the charging of dust particles by contact with hot plasmas
International audienceCharging of individual dust particles in contact with hot plasmas is studied by numerical methods. The dust particle is treated as a rigid solid body, composed by either perfectly insulating or conducting material. The collisionless plasma, consisting of electrons and singly charged ions, is simulated by Particle-in-Cell methods in two spatial dimensions. It is demonstrated that the surface conditions, i.e. roughness, of the dust particles are significant for the charging. In a streaming plasma, a dust grain develops an electric dipole moment which varies systematically with the relative plasma flow. The strength and direction of this dipole moment depends critically on the material. We observe also Langmuir oscillations excited in the vicinity of the particles, and analyze the spatial variation of their spectral distribution
Freak Waves in Random Oceanic Sea States
Freak waves are very large, rare events in a random ocean wave train. Here we
study the numerical generation of freak waves in a random sea state
characterized by the JONSWAP power spectrum. We assume, to cubic order in
nonlinearity, that the wave dynamics are governed by the nonlinear Schroedinger
(NLS) equation. We identify two parameters in the power spectrum that control
the nonlinear dynamics: the Phillips parameter and the enhancement
coefficient . We discuss how freak waves in a random sea state are more
likely to occur for large values of and . Our results are
supported by extensive numerical simulations of the NLS equation with random
initial conditions. Comparison with linear simulations are also reported.Comment: 7 pages, 6 figures, to be published in Phys. Rev. Let
Spectral up- and downshifting of Akhmediev breathers under wind forcing
We experimentally and numerically investigate the effect of wind forcing on
the spectral dynamics of Akhmediev breathers, a wave-type known to model the
modulation instability. We develop the wind model to the same order in
steepness as the higher order modifcation of the nonlinear Schroedinger
equation, also referred to as the Dysthe equation. This results in an
asymmetric wind term in the higher order, in addition to the leading order wind
forcing term. The derived model is in good agreement with laboratory
experiments within the range of the facility's length. We show that the leading
order forcing term amplifies all frequencies equally and therefore induces only
a broadening of the spectrum while the asymmetric higher order term in the
model enhances higher frequencies more than lower ones. Thus, the latter term
induces a permanent upshift of the spectral mean. On the other hand, in
contrast to the direct effect of wind forcing, wind can indirectly lead to
frequency downshifts, due to dissipative effects such as wave breaking, or
through amplification of the intrinsic spectral asymmetry of the Dysthe
equation. Furthermore, the definitions of the up- and downshift in terms of
peak- and mean frequencies, that are critical to relate our work to previous
results, are highlighted and discussed.Comment: 30 pages, 11 figure
Structure functions and intermittency in ionospheric plasma turbulence
Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions
Microgravity experiments on the collisional behavior of Saturnian ring particles
In this paper we present results of two novel experimental methods to
investigate the collisional behavior of individual macroscopic icy bodies. The
experiments reported here were conducted in the microgravity environments of
parabolic flights and the Bremen drop tower facility. Using a cryogenic
parabolic-flight setup, we were able to capture 41 near-central collisions of
1.5-cm-sized ice spheres at relative velocities between 6 and . The analysis of the image sequences provides a uniform distribution
of coefficients of restitution with a mean value of and values ranging from to 0.84. Additionally, we
designed a prototype drop tower experiment for collisions within an ensemble of
up to one hundred cm-sized projectiles and performed the first experiments with
solid glass beads. We were able to statistically analyze the development of the
kinetic energy of the entire system, which can be well explained by assuming a
granular `fluid' following Haff's law with a constant coefficient of
restitution of . We could also show that the setup is
suitable for studying collisions at velocities of
appropriate for collisions between particles in Saturn's dense main rings.Comment: Accepted for publication in the Icarus Special Issue "Cassini at
Saturn
Refraction of a Gaussian Seaway
Refraction of a Longuet-Higgins Gaussian sea by random ocean currents creates
persistent local variations in average energy and wave action. These variations
take the form of lumps or streaks, and they explicitly survive dispersion over
wavelength and incoming wave propagation direction. Thus, the uniform sampling
assumed in the venerable Longuet-Higgins theory does not apply following
refraction by random currents. Proper handling of the non-uniform sampling
results in greatly increased probability of freak wave formation. The present
theory represents a synthesis of Longuet-Higgins Gaussian seas and the
refraction model of White and Fornberg, which considered the effect of currents
on a plane wave incident seaway. Using the linearized equations for deep ocean
waves, we obtain quantitative predictions for the increased probability of
freak wave formation when the refractive effects are taken into account. The
crest height or wave height distribution depends primarily on the ``freak
index", gamma, which measures the strength of refraction relative to the
angular spread of the incoming sea. Dramatic effects are obtained in the tail
of this distribution even for the modest values of the freak index that are
expected to occur commonly in nature. Extensive comparisons are made between
the analytical description and numerical simulations.Comment: 18 pages, 10 figure
- …