33 research outputs found

    Bioreactor-Based Bone Tissue Engineering

    Get PDF
    The aim of this chapter is to describe the main issues of bone tissue engineering. Bone transplants are widely used in orthopedic, plastic and reconstructive surgery. Current technologies like autologous and allogenic transplantation have several disadvantages making them relatively unsatisfactory, like donor site morbidity, chronic pain, and immunogenicity and risk hazard from infectious disease. Therefore, regenerative orthopedics seeks to establish a successful protocol for the healing of severe bone damage using engineered bone grafts. The optimization of protocols for bone graft production using autologous mesenchymal stem cells loaded on appropriate scaffolds, exposed to osteogenic inducers and mechanical force in bioreactor, should be able to solve the current limitations in managing bone injuries. We discuss mesenchymal stem cells as the most suitable cell type for bone tissue engineering. They can be isolated from a variety of mesenchymal tissues and can differentiate into osteoblasts when given appropriate mechanical support and osteoinductive signal. Mechanical support can be provided by different cell scaffolds based on natural or synthetic biomaterials, as well as combined composite materials. Three-dimensional support is enabled by bioreactor systems providing several advantages as mechanical loading, homogeneous distribution of cells and adequate nutrients/waste exchange. We also discuss the variety of osteoinductive signals that can be applied in bone tissue engineering. The near future of bone healing and regeneration is closely related to advances in tissue engineering. The optimization of protocols of bone graft production using autologous mesenchymal stem cells loaded on appropriate scaffolds, exposed to osteogenic inducers and mechanical force in bioreactor, should be able to solve the current limitations in managing bone injuries

    Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation

    Get PDF
    AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs).METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry.RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein.CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage

    EGFR Kinase Promotes Acquisition of Stem Cell-Like Properties: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma Stem Cells

    Get PDF
    Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSCs) which are believed to be responsible for tumor initiation and maintenance. In this study, we investigated the possible role of EGFR as a regulator of “stemness” in HNSCC cells. Activation of EGFR by the addition of EGF ligand or ectopic expression of EGFR in two established HNSCC cell lines (UMSCC-22B and HN-1) resulted in the induction of CD44, BMI-1, Oct-4, NANOG, CXCR4, and SDF-1. Activation of EGFR also resulted in increased tumorsphere formation, a characteristic ability of cancer stem cells. Conversely, treatment with the EGFR kinase inhibitor, Gefinitib (Iressa), resulted in decreased expression of the aforementioned genes, and loss of tumorsphere-forming ability. Similar trends were observed in a 99.9% CD44 positive stem cell culture derived from a fresh HNSCC tumor, confirming our findings for the cell lines. Additionally, we found that these putative cancer stem cells, when treated with Gefitinib, possessed a lower capacity to invade and became more sensitive to cisplatin-induced death in vitro. These results suggest that EGFR plays critical roles in the survival, maintenance, and function of cancer stem cells. Drugs that target EGFR, perhaps administered in combination with conventional chemotherapy, might be an effective treatment for HNSCC

    Bioreactor manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies

    Get PDF
    Objectives Bioreactor‐based production systems have the potential to overcome limitations associated with conventional tissue engineering manufacturing methods, facilitating regulatory compliant and cost‐effective production of engineered grafts for widespread clinical use. In this work, we established a bioreactor‐based manufacturing system for the production of cartilage grafts. Materials & Methods All bioprocesses, from cartilage biopsy digestion through the generation of engineered grafts, were performed in our bioreactor‐based manufacturing system. All bioreactor technologies and cartilage tissue engineering bioprocesses were transferred to an independent GMP facility, where engineered grafts were manufactured for two large animal studies. Results The results of these studies demonstrate the safety and feasibility of the bioreactor‐based manufacturing approach. Moreover, grafts produced in the manufacturing system were first shown to accelerate the repair of acute osteochondral defects, compared to cell‐free scaffold implants. We then demonstrated that grafts produced in the system also facilitated faster repair in a more clinically relevant chronic defect model. Our data also suggested that bioreactor‐manufactured grafts may result in a more robust repair in the longer term. Conclusion By demonstrating the safety and efficacy of bioreactor‐generated grafts in two large animal models, this work represents a pivotal step towards implementing the bioreactor‐based manufacturing system for the production of human cartilage grafts for clinical applications

    Variations in seasonal solar insolation are associated with a history of suicide attempts in bipolar I disorder

    Get PDF
    Background: Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods: Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sun’s electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results: This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p < 0.01. Conclusion: A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Chapter Bioreactor-Based Bone Tissue Engineering

    Get PDF
    Omega-3 (ω-3) and omega-6 (ω-6) are polyunsaturated fatty acids (PUFAs) that play critical role in human health and have to be provided by food. In the brain, PUFAs are also precursors of endocannabinoids. The aim of this chapter is to review the existing literature on how dietary PUFAs impact on the endocannabinoid system in the brain and what are the consequences for brain function and dysfunction. In this chapter, we will first describe how PUFAs enter the brain, what are their metabolism processes and roles in brain function. We will describe the pathways from PUFAs to endocannabinoid production. Then, we will review the literature on how dietary ω-6/ω-3 ratio impacts the endocannabinoid system, in terms of endocannabinoid levels, proteins and endocannabinoid-dependent synaptic plasticity. In the next part, we will describe what we know about the interactions between PUFAs and endocannabinoids in neurological and neuropsychiatric disorders. Finally, we will conclude on the possible implications of the interactions between dietary PUFAs and endocannabinoids in the normal and pathological brain. In particular, we will discuss how dietary PUFAs, as homeostatic regulators of endocannabinoids, can constitute interesting therapeutic strategies for the prevention and/or treatment of neurological disorders with endocannabinoids impairment

    Modified Technique for Combined Reconstruction of Anterior Cruciate Ligament and Anterolateral Ligament

    No full text
    During the past few decades, surgical techniques for anterior cruciate ligament (ACL) reconstruction have been developing significantly. To date, studies have shown that after ACL reconstruction, rotational stability has a greater impact on the patient's satisfaction, functional scores, and return to sports than translational stability. Although challenged by many authors in the literature, biomechanical studies on the anterolateral ligament (ALL) of the knee and clinical studies regarding ALL reconstruction have been revealing promising results. Thus, the potentially significant role of the ALL in biomechanical load sharing and improving rotational control of the knee has led to the development of various reconstruction techniques whose goal is to achieve simplicity and yield the best results possible. Guided by this idea, we have developed a modified ACL-ALL reconstruction surgical technique. In this article, our simple, bone-saving, anatomic technique to reconstruct both the ACL and ALL using hamstring tendon autograft is described
    corecore