296 research outputs found

    Why simulate a sample of recycled wood?

    Get PDF
    Wood products follow the same cycle as other materials: manufacture, use and disposal. For certain applications, chemical additives are added to wood to increase its durability against biological and physical attack. At the end of life, waste wood is chipped or crushed before being recovered as raw material for new products or as fuel for energy. In recycled wood, there is the potential that some wood particles are contaminated by hazardous substances, such as organic or heavy metal preservatives. Therefore there is a need for a quality control method of assessing recovered wood that is on the one hand sufficiently precise and on the other not too expensive to preclude the use of recycling wood in to new products.This paper covers some preliminary research that is part of a large study that aims to develop a robust analytical method for recovered wood. However the extreme variability of recovered wood makes it difficult to develop such protocols on real recovered wood samples. Consequently, model chip piles with known contamination levels were created to simulate real world recovered wood samples

    A PERSONALIDADE CIVIL DOS NASCITUROS E OS SEUS REFLEXOS JURÍDICO-PROCESSUAIS

    Get PDF
    Sempre foi acirrada a discussão sobre a personalidade e capacidade civil dos nascituros. Reconhecer-lhes a titularidade de direitos fez forçosa a análise sobre a capacidade de ser parte em um processo. O que se concluiu é que, mesmo prevalecendo no Brasil a Teoria Natalista, a Teoria da Personalidade Condicional se apresenta mais acertada, tendo em vista a necessidade de o Código Civil ser interpretado sistemática e teleologicamente com o texto constitucional, de modo que a protetividade das normas de direitos humanos estendam seus efeitos também a quem se encontra no ventre materno

    OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory

    Get PDF
    The structures of ideal armchair (5,5) single-wall carbon nanotubes (SWCNTs) of different lengths (3.7, 8.8, and 16.0 Å for C40H20, C80H20, and C140H20) and with 1–10 hydroxyl groups at the end of the nanotube were fully optimized at the B3LYP/3-21G level, and in some cases at the B3LYP/6-31G* level, and the energy associated with the attachment of the OH substituent was determined. The OH-group attachment energy was compared with the OH functionalization of phenanthrene and picene models and with previous results for zigzag (9.0) SWCNT systems. In comparison to zigzag SWCNTs, the armchair form is more (by about 5 to 10 kcal mol−1) reactive toward hydroxylation

    DFTB+, a software package for efficient approximate density functional theory based atomistic simulations

    Get PDF
    DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green's functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives

    Recent Developments in the General Atomic and Molecular Electronic Structure System

    Get PDF
    A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized
    corecore