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ABSTRACT
A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and
LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the
fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches
to Hartree–Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been
implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical
processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the
power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is
considered. Future developments are briefly summarized.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005188., s

I. OVERVIEW/BACKGROUND

GAMESS (General Atomic and Molecular Electronic Structure
System) was originally developed by Dupuis and co-workers in the
late 1970s under the auspices of the National Resource for Com-
putational Chemistry (NRCC), an organization that was sponsored
by the National Science Foundation. GAMESS is a multi-functional
electronic structure program with users in more than 100 coun-
tries and is run on nearly every available architecture, ranging from
MacOS and Windows to the pre-exascale system Summit at Oak
Ridge National Laboratory. GAMESS is a “cousin” of the HONDO
program, which continues to be developed by Dupuis. GAMESS is
distributed at no cost with a very simple license to prevent unau-
thorized redistribution. GAMESS itself is primarily written in For-
tran77, with an increasing number of functionalities written in For-
tran90. Associated with GAMESS is an object-oriented C++ library
called LibCChem, initiated in 2010, which contains an increasing
number of quantum chemistry functionalities and is written for both
central processing unit (CPU) and GPU (graphical processing unit)
architectures.

As discussed in two previous reviews in 19931 and 2005,2

GAMESS has essentially all of the commonly used electronic struc-
ture methods, including Hartree–Fock (HF) self-consistent field
(SCF), density functional theory (DFT) with many of the pop-
ular functionals, second order perturbation theory (MP2), cou-
pled cluster (CC) theory, including CCSD(T), and novel methods
such as CR-CC(2,3) that are capable of correctly breaking single
bonds, equations-of-motion (EOM) coupled cluster theory, time-
dependent density functional theory (TDDFT), configuration inter-
action (CI) up to and including full CI, complete active space (CAS)
SCF, multi-reference (MR) MP2, and multi-reference CI (MRCI).
Also available in GAMESS is the effective fragment potential (EFP)
method, a sophisticated model potential with no fitted parameters,
which is applicable to any molecular system. Other functionalities
include fully analytic second energy derivatives (Hessians) for closed
shell HF and CASSCF, fully analytic energy first derivatives (gradi-
ents), and, therefore, semi-numeric Hessians for HF, DFT, MP2, CI,
and EFP, thereby enabling the prediction of vibrational frequencies
and IR and Raman spectra. Related to vibrational spectroscopy is the
vibrational SCF suite of methods developed by Gerber and cowork-
ers.3 GAMESS also has several options for reaction path following
and for performing classical trajectories using any of the available
electronic structure methods. Solvent effects can be incorporated

explicitly using the EFP method or implicitly using the polariz-
able continuum model (PCM4), COSMO (conductor-like Screening
Model),5 or the surface volume polarization (SVP) model.6 Surface
science can be studied using the surface integrated molecular orbital
molecular mechanics (SIMOMM)7 method.

If one desires very high accuracy in electronic structure calcu-
lations, there is a CEEIS (correlation energy extrapolation by intrin-
sic scaling)8 method developed by Ruedenberg and Bytautas that
provides essentially the exact full CI energy at a fraction of the cost.

The ability of GAMESS to treat excited electronic states, pho-
tochemistry, and related phenomena such as surface crossings and
conical intersections has made significant advances with the intro-
duction of spin-flip (SF) methods9 for the energy and the ana-
lytic gradient,10 including the development of a general approach to
spin-correct spin-flip.11

An exciting new feature of GAMESS is the quasiatomic orbital
(QUAO) analysis developed by West and colleagues.12 This anal-
ysis, which continues to be developed, has been applied to several
interesting problems in chemistry.

Since the early 1990s, a major effort related to the development
of GAMESS has been to maximize the scalability (parallelism) of the
code. The ability of GAMESS to explore potential energy surfaces
accurately and efficiently is much improved with the development
of several GAMESS functionalities that can take advantage of com-
bining MPI (message passing interface) and OpenMP into a hybrid
approach that takes optimal advantage of both distributed comput-
ing (MPI) and shared memory computing (OpenMP). This combi-
nation has now been applied to HF, DFT, and the resolution of the
identity (RI) version of MP2.

In the past several years, this stride toward high performance
computational chemistry has increasingly taken center stage.13–18 An
important component of this endeavor has been to make optimal use
of accelerators. In the remainder of this review, the primary focus
is on new features that have been implemented since 2005 and, in
particular, the advances in the development of highly scalable code,
with the aim of achieving the ability to make use of the anticipated
exascale computers, where exascale may be defined as 1018 flops or a
gigagigaflop.

An important component of the development of highly scalable
electronic structure software is the innovation of reliable fragmen-
tation methods. In GAMESS, this specifically means the fragment
molecular orbital (FMO),19 the effective fragment potential (EFP),20

and the effective fragment molecular orbital (EFMO)21 methods.
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Together, these methods facilitate the capability to address prob-
lems that contain tens of thousands of atoms with an accuracy
that is equivalent to that of correlated electronic structure methods.
Another type of fragmentation subdivides wave functions, rather
than physical atoms or groups of atoms. Two such methods are
ORMAS22 (occupation restricted multiple active spaces) and CIM
(cluster in molecule).23 The ORMAS method has been enhanced
by the addition of dynamic correlation via second order pertur-
bation theory (ORMAS-PT2),24 thereby enabling accurate studies
of excited electronic states. The ORMAS method also enabled the
development, mentioned above, of a general spin-correct spin flip
method. The CIM method, developed by the Piecuch group, has
been combined with the FMO method25 to enable fast and accurate
coupled cluster calculations.

A second key component of the stride toward exascale com-
puting is the recognition that accelerators/co-processors, such as
GPUs, will play an important role in the future of high performance
computational chemistry. In the last decade, this recognition led to
the development of the C++ CPU/GPU library LibCChem that is
attached to GAMESS and has an expanding array of functionalities.
These and other new GAMESS developments will be discussed in
Secs. II–V.

II. FRAGMENTATION METHODS
The development of fragmentation methods in GAMESS has

played a central role in the advance toward massively parallel com-
puting capability, since each fragment can be computed essentially
independently of every other fragment. This means that the com-
putational bottleneck reduces from that of the entire molecular
system to that of the largest fragment. In the following, several
fragmentation methods that are available in GAMESS are discussed.

A. Fragment molecular orbital theory
The FMO method26 was first released in GAMESS in 2004.27

FMO is a QM approach capable of evaluating the properties of
large molecular systems;28–30 the largest system computed with
FMO2/DFTB in GAMESS has about 1.2 × 106 atoms.31 To enable
this large-scale molecular dynamics (MD) simulation, considerable
efforts were invested in improving the MD engine in GAMESS.

FMO in GAMESS is efficiently parallelized using the multi-
layer hierarchical parallelization scheme, generalized distributed

data interface (GDDI)27 possibly in combination with OpenMP.32

Good parallel efficiency was reported for FMO simulations on
supercomputers using GDDI.33 GDDI can also be used for paral-
lelization of non-FMO simulations, provided that they have some
granularity in terms of tasks, for instance, different replicas in replica
exchange MD.34,35 Various properties can be computed with FMO in
GAMESS, as summarized in Table I.

FMO can be combined with many but not all QM methods
available in GAMESS. The QM methods interfaced with FMO are
listed in Table II. In order to compute the analytic gradient for
FMO accurately, it is necessary to evaluate orbital responses (deriva-
tives of molecular orbital coefficients with respect to nuclear coor-
dinates) by solving coupled-perturbed Hartree–Fock (CPHF) equa-
tions. This can be done efficiently using the self-consistent Z-vector
method (SCZV),36 which has to be formulated for each wave func-
tion separately, and not all QM methods can be used with SCZV
at present. Analytic second derivatives can be evaluated in FMO by
solving a different set of CPHF equations. Among all methods, HF
and DFT have been most extensively extended to treat open-shell
systems.

The FMO method has also been interfaced with the cluster-
in-molecule (CIM) method developed by Piecuch and co-workers,
as discussed in Sec. III B. CIM is based on an orbital partition-
ing, rather than a physical partitioning of atoms using localized
molecular orbitals (LMOs). The main CIM bottleneck is the need
to localize the orbitals of the entire system, no matter how large.
In analogy with the FMO method itself, the FMO/CIM method25

reduces the bottleneck to the localization of the orbitals of the largest
fragment.

B. Effective fragment potential
The effective fragment potential (EFP) method is an ab initio

force field designed to model intermolecular interactions accurately
and efficiently. In EFP, parameters for each individual fragment
(monomer) are generated from a single point ab initio calculation,
typically at the HF level for a chosen geometry (the MAKEFP run
described below). In an EFP calculation, all fragments are inter-
nally rigid, i.e., they have a fixed geometry. The interaction energy
between EFP fragments (EFP–EFP) and the interaction energy
between EFP fragments and a molecule described by a quantum
mechanical (QM) wave function, if one is present (QM–EFP), are
computed. The QM–EFP approach was implemented in order to

TABLE I. Properties that can be computed with FMO in GAMESS.

Property Reference

Harmonic frequencies, IR and Raman spectra 37
Electronic excitations 38
Electron density and molecular electrostatic potential on a grid 39
MOs, their energies, and density of states 40
Minimum energy crossing point of energy surfaces 41
Interaction energy analysis for explicit solvent 42
Pair interaction energy decomposition analysis for implicit solvent 43
Fluctuation analysis of pair interactions in MD 44
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TABLE II. The highest analytic derivative of the energy with respect to nuclear coordinates for each QM method interfaced
with FMO in GAMESS (0 = energy, 1 = gradient, and 2 = Hessian).a

Restricted closed shell Restricted open shell Unrestricted Multi-reference

DFTB 245

HF 246 247 248 149

CIS 050

MP2 151 147 052

CC 053 054

DFT 255 2
TDDFT 156 038

PCMb 237 152 152

aIt is possible to combine several methods in the multilayer approach.57 DFTB = density functional tight binding, CIS=CI singles,
and CC = coupled cluster.
bPolarizable continuum model (PCM) can be combined with other QM methods; it comes with its own limitations in the current
implementation, as shown in the table; for example, the highest derivative for RMP2/PCM is min(1,2) = 1.

handle the situation in which significant changes occur in the geom-
etry or electronic structure of the QM region, while the “spectator”
molecules (EFP fragments) remain internally intact. It is worth not-
ing that there are differences in the formulation of EFP–EFP and
QM–EFP interaction components though they arise from the same
theory.

The original EFP method (called EFP1) was designed to model
aqueous solvation only. All parameters in EFP1 are stored within
GAMESS and do not need to be generated from a MAKEFP cal-
culation. The EFP1–EFP1 and QM–EFP1 interaction energies are
composed of three terms,

E = ECoulomb + Epolarization + Eremainder . (1)

The first term, ECoulomb, is the Coulomb interaction energy between
distributed multipoles of different fragments located at atom cen-
ters and bond midpoints, generated using the distributed multi-
pole analysis by Stone.58 Epolarization is the polarization energy com-
puted by iteratively converging the induced dipole moments of the
localized molecular orbitals (LMOs) to self-consistency. Eremainder
is the remainder interaction energy. This term is fitted to repro-
duce the HF59 or DFT (B3LYP) interaction energy60 of the water
dimer at various points of the potential energy surface. For the
HF derived parameters, the remainder term includes exchange–
repulsion and charge transfer. For the DFT derived remainder term,
electron correlation from the B3LYP functional is also included in
the interaction energy.

For QM–EFP1, the Coulombic effect from the distributed mul-
tipoles of EFP fragments is included as a perturbation to the QM
one-electron Hamiltonian.59 Also contributing to the QM one-
electron Hamiltonian is the polarization between the charge density
of the ab initio region and the induced dipoles of EFP fragments,
both of which are converged to self-consistency.59 The QM–EFP
and EFP–EFP polarization are non-separable because the induced
dipoles of one fragment depend on the static multipoles and induced
dipoles of all other EFP fragments, as well as the charge density of the
ab initio region. The remainder term also affects the one-electron
Hamiltonian of the QM part.

QM–EFP1 has been shown to successfully describe aqueous
solvent effects for both ground and excited electronic state prop-
erties and processes.59,61–68 Several types of methods can be used
to describe the QM region, including Hartree–Fock,59 DFT, time-
dependent DFT,61 CIS,62 MCSCF,63 MP2, multi-reference MP2,64

coupled cluster (CC), and the equation-of-motion CC (EOM-CC)
suite.66 QM–EFP1 has been interfaced with the polarizable contin-
uum model (PCM).4 A recent development for the EFP1 method is
the addition of a dispersion energy term. Both an empirical disper-
sion term69 and the first principles derived dispersion term70 were
implemented, as described below. All EFP1–EFP1 and QM–EFP1
analytic gradients have been derived and implemented.59 Therefore,
one can perform geometry optimizations and molecular dynamics
simulations.

Recently, De Silva, Adreance, and Gordon implemented the
Grimme–D3 semi-empirical dispersion energy correction (includ-
ing the “E8 term”) for EFP1 and for QM–EFP1 systems.69 The
resulting method is called EFP1–D3, or QM–EFP1–D3 if there is
a QM component. Since the D3 correction can be computed with
force field speed, the computational cost of this method is trivial.
In addition, the EFP1 and QM–EFP1 analytic gradients with the
D3 correction have been developed and are available in GAMESS,
thereby enabling the geometry optimizations of water clusters and
solute–water complexes, with the dispersion effect included. This
method has been applied to a broad range of test molecules: neu-
tral water clusters, protonated and deprotonated water clusters,
and auto-ionized water clusters (water2771 test set), as well as
solute–water binary complexes (all of the water-containing com-
plexes in the S6672 test set). The EFP1–D3 and QM–EFP1–D3
binding energies of the above test molecules are in good agree-
ment with those obtained using MP2 and CCSD(T) at the com-
plete basis set (CBS) limit. The binding energies are consider-
ably improved (errors are reduced by roughly half) compared
to EFP1 and QM–EFP1 without the dispersion correction. The
EFP1–D3 and QM–EFP1–D3 methods are important for evaluating
the molecular properties of large water and water–solute molec-
ular systems for which the computational cost can be significant
otherwise.
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Another dispersion correction to EFP1, derived from first prin-
ciples, was implemented.70 This dispersion energy term is identical
to the one used in the EFP2 method and is currently implemented
only for EFP–EFP interactions. The parameters needed to compute
this energy term are generated at the RHF/DH(d,p) level of theory,
similar to the other parameters in EFP1.

Fitting to ab initio potentials for every species of interest is nei-
ther desirable nor practical. The EFP1 method was later extended to
EFP2 to model any (closed shell) molecule. In EFP2, the intermolec-
ular interaction energy is given by

E = ECoulomb + Epolarization + Edispersion
+Eexchange - repulsion + Echarge transfer , (2)

where ECoulomb and Epolarization are defined in the same manner as in
EFP1. The dispersion energy Edispersion is computed with LMO polar-
izability tensors. The exchange–repulsion energy, Eexchange-repulsion,
arising from the Pauli repulsion, is derived from a power expan-
sion of the intermolecular overlap.73 The charge transfer energy,
Echarge transfer , is the stabilizing interaction between occupied MOs
of one fragment and unoccupied MOs of another.74 In contrast to
EFP1, the EFP2 parameters are all generated from first principles
without any empirical fitting. A recent addition to the EFP2–EFP2
interaction energy is the R−7 dispersion interaction.

For QM–EFP2, the Coulomb and polarization terms are the
same as in QM–EFP1. The remainder term of QM–EFP1 is replaced
by explicit formulations of the dispersion and exchange–repulsion
terms in QM–EFP2. The effect of exchange–repulsion is accounted
for via the exchange–repulsion Fock contribution to the one-
electron part of QM Hamiltonian, whereas the dispersion energy
is added as a post-SCF energy correction. Unlike the Coulomb
and polarization terms, the QM–EFP2 exchange–repulsion term75

contains explicit electron repulsion integrals (ERIs), making it the
most expensive term in the QM–EFP2 method. The QM–EFP2
R−6 dispersion coefficients are computed using EFP LMO dynamic
dipole polarizabilities and the dipole integrals as well as the orbital
energies of the QM part.76 Currently, the QM–EFP2 R−7 disper-
sion component and the charge transfer term are not yet imple-
mented. Recent developments for QM–EFP2 will be described
below.

When two molecules are sufficiently close and their electron
density overlap is large, the multipole approximation becomes inad-
equate due to its classical nature. Damping/screening functions must
be introduced for the Coulomb interaction to ensure the correct
asymptotic behavior. Similarly, polarization and dispersion, which
are developed from intermolecular perturbation theory based on
the negligible overlap assumption, also demand proper screening at
short-range. For the EFP–EFP interactions, several damping func-
tions for the Coulomb, polarization, and dispersion interactions are
implemented.77 After the development of the R−7 dispersion interac-
tion, the overlap-based dispersion damping function was reformu-
lated to incorporate odd-power terms.78 For QM–EFP2, currently,
the Coulomb interaction employs Gaussian damping and the dis-
persion interaction can be screened using either Tang–Toennies or
overlap-based damping functions.76,79 The recent developments for
damping functions of different interaction terms will be mentioned
below.

Since EFP2 is an ab initio force field, the MAKEFP run is
employed to generate all parameters from first principles. These
parameters essentially comprise various properties of a fragment,
computed at the HF level of theory. The computed EFP2 parameters
can be either printed out to a file (with .efp extension) and subse-
quently inserted into an EFP2–EFP2 or QM–EFP2 job input, possi-
bly through a library of standard fragments, or computed on-the-fly
for the Effective Fragment Molecular Orbital (EFMO) calculations
(discussed in Sec. II C).

The five terms in the EFP2–EFP2 energy expression [Eq. (2)]
need the following input for each type of fragment: The Coulomb
term requires multipole moments, distributed over atomic centers
and bond midpoints. The polarization term requires polarizabil-
ity tensors, distributed over LMO centroids. The dispersion term
needs distributed dynamic polarizability tensors, again, over LMO
centroids. The exchange–repulsion term utilizes data on fragment
LMOs, while the charge transfer contribution uses either canonical
molecular orbitals (CMOs), already computed within the HF calcu-
lation, or the valence virtual orbitals (VVOs)80 for a more computa-
tionally efficient truncated virtual space. The screening parameters
for the Coulomb term are computed by fitting on a grid the damped
classical multipolar electrostatic potential to the quantum potential
of the fragment, with damping functions having either a Gaussian or
an exponential form.77,81

Like much of GAMESS, the EFP method and the MAKEFP
module evolve over time. Because the MAKEFP calculation to estab-
lish the EFP parameters is a significant bottleneck, considerable
effort has been expended to make EFP more computationally effi-
cient and scalable. The parallelization approach for MAKEFP is
shared memory, motivated by the opportunity to use a hybrid
MPI/OpenMP parallel approach for the EFMO method. The par-
allelization is done using OpenMP pragmas. The distributed nature
of the EFP2 potential and the manner in which some of the EFP
parameters are structured provide parallelization opportunities. For
instance, in addition to being distributed, the parameters for the
Coulomb term have independent orders of multipole moments
and the dispersion term requires 12 independent frequencies. The
screening parameters for the Coulomb term are computed on a
grid, which is inherently parallelizable. There are other points of
parallelization within the MAKEFP code as well. An additional
level of performance improvement for the code is achieved via
minimizing I/O within the MAKEFP workflow, except printing
to the .efp file (EFMO uses in-memory data transfer for the EFP
parameters).

The dispersion interaction is often expressed as an expansion
of inverse powers of distances between relevant molecular moieties,

Edisp
=∑n≥6

Cn

Rn , (3)

where R represents the distances between molecular moieties and
n starts at 6, which represents the induced dipole-induced dipole
part of the dispersion interaction. Most methodologies that treat dis-
persion do not include the odd-power terms and simply fit the C6
coefficient to experimental or to high-level ab initio values. Such an
approach can work because the fitted parameters can cover up defi-
ciencies in the underlying potential. To better understand the effect
of the odd-power dispersion terms, the leading odd-power term, R−7

dispersion (Disp7), was implemented for the EFP2–EFP2 dispersion
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interaction, utilizing the frequency-dependent anisotropic Cartesian
polarizabilities located at the centroids of the LMOs of the EFP frag-
ments. It was shown that Disp7, although it can rotationally average
to zero in some situations, can be either attractive or repulsive, with
substantial magnitudes relative to the R−6 dispersion, and is highly
dependent on the orientation of the molecules.82 Furthermore, a
benchmarking study based on the S22 dataset has demonstrated that
in hydrogen-bonded systems, Disp7 almost always is repulsive and
has a substantial magnitude (as large as 50% of the R−6 term in some
cases), whereas it makes an insignificant contribution for other types
of complexes.83 The analytic gradient for Disp7 has been derived
and implemented, which allows one to take the Disp7 effect into
account for geometry optimizations and molecular dynamics sim-
ulations.78 In addition, the overlap-based damping function, which
was originally developed only for the even-power terms, now has
been reformulated to incorporate the odd-power terms.78

Recently, the QM–EFP2 method has been reassessed, and sev-
eral improvements were made to the Coulomb, exchange–repulsion,
and dispersion terms. It was realized that, unlike QM–EFP1 where
both the nuclear and electronic charges of EFP fragments were
damped, the Gaussian damping function in the Coulomb term was
only applied to the EFP electronic charges in QM–EFP2. This seem-
ingly insubstantial difference led to large discrepancies of the QM–
EFP2 Coulomb energy compared to either EFP2–EFP2 or symme-
try adapted perturbation theory (SAPT).84,85 Now, both QM–EFP1
and QM–EFP2 Gaussian damping functions screen all of the EFP
effective charges (nuclear + electronic).21

For the exchange–repulsion term, the spherical Gaussian
overlap (SGO) approximation, which provides accurate EFP2–
EFP2 energies with high computational efficiency, was shown to
cause large errors in the QM–EFP2 exchange–repulsion energy.
Hence, the recently revised formulation completely removes the
SGO approximation and computes the ERIs explicitly. More-
over, the early QM–EFP2 exchange–repulsion implementation was
limited to only one EFP fragment. The current implementation
has been successfully tested for water clusters with hundreds to
thousands of fragments. The new implementation is dramatically
improved by employing the direct (on-the-fly) approach for com-
puting ERIs with either pure MPI or hybrid MPI/OpenMP par-
allelization schemes, in contrast to the original disk-based serial
implementation.79

As was done for the EFP2–EFP2 dispersion, the QM–EFP2 dis-
persion energy needs to be screened to ensure the correct asymptotic
behavior. Both the Tang–Toennies and the overlap-based damp-
ing functions are available to account for exchange–dispersion and
charge penetration effects at short-range. Very recently, the overlap-
based damping formula has been updated to be of the same func-
tional form as the EFP2–EFP2 overlap-based damping function.79

Currently, QM–EFP2 has been coupled with HF, DFT, MP2,
and CC. The development of QM–EFP2 gradients is in progress.
All of these efforts will allow better prediction and understanding
of chemical properties in both ground and excited states in clusters
and in the condensed phase.

C. Effective fragment molecular orbital method
The EFMO86 method is a fragmentation method in a similar

spirit to FMO. It combines the fragmentation scheme from FMO

with the ab initio force field EFP method to account for the long-
range and many-body terms. The method was developed to take
advantage of the computational efficiency of both methods so that
computations on molecules that were previously out of reach for
chemists due to the computational cost would become feasible. The
initial version of EFMO was developed with only the Coulomb inter-
action and polarization terms from EFP included, but in Ref. 21, the
remaining three terms in EFP (dispersion, exchange–repulsion, and
charge transfer) were included. In Ref. 87, the fully analytic gradient
for EFMO with the Coulomb, polarization, exchange–repulsion, and
dispersion terms was reported. The analytic gradient for the charge
transfer term is under development.

Similar to the FMO energy equation, the EFMO energy expres-
sion is a fragmentation-based many-body expansion, where the
system is first divided into fragments (monomers). In EFMO, the
energy is the sum of the monomer, dimer, and many-body polariza-
tion terms. The EFMO energy equation can be written as [Eq. (3.22)
from Ref. 87]

EEFMO
=∑

fragments
A E0

A +∑
RA,B≤Rcut

A>B (ΔE0
AB − E

pol
AB)

+∑
RA,B>Rcut

A>B EEFP
AB + Epol

tot , (4)

where E0
A is the gas phase energy of fragment A, E0

AB = E
0
AB −E

0
A −E

0
B

(the dimer two-body interaction energy), and EEFP
AB is the long-range

EFP energy between fragments A and B
Epol
tot is the EFP polarization energy for the entire system;

Epol
AB is the EFP polarization energy for fragments A and B; and

RA,B = minI∈A,J∈B
∣rI−rJ ∣
VI+VJ

is the relative interatomic distance between
fragments A and B, where atoms I (J) are on fragment A (B) and VI
and VJ are the van der Waals radii of atoms I and J, respectively.

To compute the EFMO energy, first an ab initio method is cho-
sen for the gas phase energy computations (e.g., RHF). Then, the
monomer energy is computed by summing the gas phase energy
for each monomer. Next, the dimer interaction energy is computed
either using the chosen ab initiomethod or using the long-range EFP
interaction energy as an approximation to the exact dimer inter-
action energy. To determine what is “long-range” and what is not,
the relative distance between the fragments (RA,B) is computed and
compared to a user-supplied cutoff value Rcut . If the distance is
larger than the cutoff, the fragment–fragment interactions are con-
sidered “long-range,” and the EFP interaction energy is used. Finally,
to account for many-body polarization effects, the EFP polariza-
tion energy between all fragments in the system is added to the
energy.

The monomer and dimer terms in the EFMO method are dif-
ferent from those in the FMO method. Specifically, in EFMO, the
monomer and dimer terms do not include the monomer Coulomb
field. Instead, the EFMO method includes a many-body polarization
term computed from all of the fragments.

The EFMO gradient can be computed by considering each term
in Eq. (4). Each term in Eq. (4) is differentiated with respect to the x-
coordinate of each atom K (xK). Note that here EEFP

AB is expanded
to Coulomb, exchange–repulsion, dispersion, and charge transfer
terms. The gradients of the ab initio energy terms can be computed
with standard methods.88 The gradients of the EFP terms except for
charge transfer are discussed in Ref. 87. The main difference between
the standard EFP gradients and the gradients of the EFP terms in
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the EFMO gradient is that in standard EFP computations, EFP frag-
ments are rigid, while in EFMO, the fragments are flexible. Taking
into account flexible fragments results in additional response terms
with response equations that need to be solved to compute a fully
analytic gradient.

The anticipated US exascale computers are currently all
planned to be heterogeneous systems in which each node contains
multiple GPUs. To take advantage of the massive parallelism avail-
able, being able to effectively decompose the computation so that it
can run in parallel across nodes as well as use the parallelism inside
nodes is important.

Transitioning to exascale computing involves multi-grain, mas-
sive yet flexible parallelization of a code, adoption of accelerators,
careful use of bandwidth, and memory structures. The structure of
the EFMO method maps very naturally onto these requirements. As
a fragmentation method, EFMO can have its independent monomer
and dimer terms in energy and gradient expressions, mapped onto
different nodes or sets of nodes of a supercomputer while also reduc-
ing memory requirements down to that for a fragment or a dimer.
There are a limited number of communication points throughout
the run (transitioning from monomers to dimers, reduction for
computing total energy or gradient), and the only term with sig-
nificant communication requirements is the total polarization, Epol

tot

and ∂Epol
tot /∂xK , which is done once per single point energy calcu-

lation and then once per gradient point, respectively. Within other
terms for each monomer and dimer, one can either use shared-
memory parallelization or request a hybrid-parallel run at sev-
eral nodes, depending on the scaling and implementation of the
electronic structure method of choice and available computational
resources. The electronic structure method can further utilize the
offloading capability, if one is already implemented (see Sec. III A).
Finally, describing many-body contributions via the polarization
term allows one to stop at the dimers in the EFMO energy expres-
sion, reducing the scaling and memory bottlenecks to the require-
ments of the largest ab initio dimer.

III. ELECTRONIC STRUCTURE METHODS IN GAMESS
There have been many new electronic structure methods imple-

mented in GAMESS in the last 15 years. These include novel imple-
mentations of the resolution of the identity (RI)-MP2 method, a
multitude of coupled cluster methods thanks to the efforts of the
Piecuch group, the ORMAS MCSCF and CI method including a sec-
ond order perturbation theory correction, a coupled electron pair
approximation (CEPA) suite of methods, the nearly exact corre-
lation energy extrapolation with intrinsic scaling (CEEIS) method
spin-correct spin flip methods based on ORMAS, the fundamen-
tal analysis of the chemical bond based on quasi-atomic orbitals
(QUAOs), the density functional theory/tight binding (DFTB)
method, and many new functionals mostly due to the Truhlar group.
Each of these is discussed in Secs. III A–III K.

A. Hartree–Fock and second order perturbation
theory using a hybrid MPI/OpenMP approach
to parallel code

The introduction of the hybrid MPI/OpenMP parallel pro-
gramming model to GAMESS is one of the efforts to design

efficient and scalable electronic structure codes that can treat macro-
molecular systems at the ab initio level of accuracy. The combined
MPI/OpenMP model has been used in GAMESS for both regular
quantum mechanics (QM) methods and QM methods in the frag-
mentation context. In GAMESS, MPI is wrapped in the distributed
data interface (DDI)89 or the Generalized DDI (GDDI)19 interface
to assist distributed arrays allocated across multiple compute nodes
and the multilevel parallelism using the MPI group concept. In this
section, MPI mostly refers to the GDDI interface supporting the
multilevel parallelism in fragmentation methods. By using the group
concept, the GDDI arranges MPI compute processes (ranks) into
groups. Ranks in the same group can communicate with each other
referring to the same MPI communicator. This allows each group
of ranks to work on independent chunks (e.g., a fragment ab initio
calculation) that subsequently increases the parallel coverage and the
scalability of the parallel code. In fact, the distributed memory model
supported by the pure MPI model remains the best way to build
and maintain very large scalable supercomputers. However, the pure
MPI parallel model is known to suffer from a large memory footprint
(e.g., due to replicated data in all ranks) and a high communication
overhead (e.g., for its send/receive message protocol) in large scale
calculations. This drawback becomes serious for the new multicore
CPU generation. For instance, the Intel KNL compute node can have
64, 68, and 72 cores; each core has four threads, i.e., full CPU uti-
lization on each compute node can support up to 256–288 compute
processes. The MPI codes can rarely make use of more than half of
these CPU cores.

Therefore, the hybrid MPI/OpenMP model was introduced
to GAMESS to maintain the MPI scalability and boost the effi-
ciency of the computation (e.g., by alleviating MPI restrictions).
For the MPI/OpenMP fragmentation execution, MPI (GDDI) cre-
ates on each compute node just one rank. This rank usually does
not have relevant computation; the actual computation is carried
out by the team of threads that are spawned from this MPI rank
using the OpenMP API. The role of the MPI rank is mainly to
communicate with the other ranks in the other compute nodes
(e.g., through send and receive protocols). Since threads in a team
can efficiently share the node memory address, the MPI/OpenMP
ansatz can minimize replicated data as well as the intranode com-
munication overhead that subsequently enhances the computa-
tion efficiency and reduces the memory footprint. This approach
has been applied to both HF and DFT codes by Mironov and
co-workers.

In addition to the hybrid MPI/OpenMP model, the resolution-
of-the-identity (RI) approximation90–92 has been applied to cor-
related (fragmentation) methods, particularly to the second-order
Moller–Plesset perturbation theory (MP2). The idea behind this
combination is that the fragmentation methods chemically divide
large molecules into “small” fragments; this is followed by the appli-
cation of the RI approximation that further reduces the size of
large data structures that arise from the underlying electronic struc-
ture calculations for fragments; finally, the hybrid parallel program-
ming model minimizes replicated data and subsequently maximizes
the available node shared memory. All of these factors maximize
the locality of the computations by allowing the entire large data
arrays or large chunks of them to be fit into the node memory. The
data are then processed by thread workers enabled by the OpenMP
API. The next paragraphs briefly discuss the MPI/OpenMP
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implementation for regular and fragmentation HF and the RI-MP2
energy and gradient.

At the Hartree–Fock level of theory, the bottleneck of the cal-
culations is the evaluation of four-index two-electron repulsion inte-
grals (4-2ERI) in the AO basis. The AO basis functions on each
atom that share certain common internal parameters (e.g., the angu-
lar momentum) are grouped into a shell. The integral evaluation,
therefore, would need to loop over four shell (shell quartet) layers
of AOs. Integrals of all AO basis functions in this shell combina-
tion are calculated at once. Before the shell quartet is executed, a
fairly large number of small integrals can be eliminated90,93 using the
Cauchy–Schwarz inequality. Both symmetry and the screening can
significantly reduce the computational cost of integral evaluation.
After integrals in a shell quartet are calculated, they are accumulated
into the Fock matrix.

In the original MPI-based HF code94 in GAMESS,1,2 all data
arrays (e.g., overlap matrix, common blocks of AO shell informa-
tion, Fock matrix, and density matrix) are replicated over all MPI
ranks. A global sum is needed to accumulate the Fock matrix con-
tribution from all MPI ranks at the end of the calculation. For the
new generation of multiple core computers, the replicated arrays
can introduce a very large memory footprint that deters the program
from making use of all compute node resources efficiently.

There are two algorithms for the MPI/OpenMP HF imple-
mentation32 in GAMESS, developed by Mironov and co-workers.
The first approach is based on the private Fock matrix, and the
second uses a shared Fock matrix for threads in a team. The pri-
vate Fock matrix approach introduces better performance due to
the direct accumulation of integrals to the Fock matrices, and it
only needs one barrier at the end of the computation to reduce the
private Fock matrix to the final one. For the shared Fock matrix
approach, barriers are set up to prevent data race conditions (i.e.,
writing integrals to the same memory address of the shared Fock
matrix). Apparently, the private Fock matrix method introduces a
larger memory footprint than the shared Fock approach. Therefore,
the shared Fock approach is useful when limited memory is a prob-
lem. Benchmark calculations for the MPI/OpenMP HF implementa-
tions for carbon-based material up to 2000 carbon atoms introduced
a speed-up of ∼6× compared with the original MPI-based code in
GAMESS.

In the fragmentation context, particularly the FMO
method,26,36,95–98 the MPI/OpenMP HF implementation is directly
helpful for FMO. For higher FMO orders, each fragment is sub-
merged into the electrostatic potential (ESP) of the nuclei and the
electron density of all other fragments. The most expensive part of
the ESP is to evaluate the Coulomb interaction of electron densities
among fragments. The ESP step has therefore been parallelized by
Mironov.

For correlated fragmentation methods, e.g., the second-order
Moller–Plesset perturbation theory method (MP2), one of the bot-
tlenecks is the integral transformation from the AO to the MO
basis, which is a matrix multiplication operation. While matrix mul-
tiplication is well supported by linear algebra libraries, the MP2
energy and gradient usually require large memory to store large
data structures such as 4-2ERIs in the AO, the MO, and/or partially
AO/MO bases. There are two main MP2 codes in GAMESS. The first
(IMS) code99 relies on storing partially and fully transformed inte-
grals on disk files. The other (DDI) code89,100 manipulates integral

matrices on the distributed memory buffer. The DDI code is more
efficient since the read/write from/to the distributed memory is
more efficient than those on disk files. Another MP2 energy code101

in GAMESS employs the resolution-of-the-identity (RI) approxi-
mation that approximates 4-2ERIs by the product of 3-2ERIs and
2-2ERIs. The computational cost of 3- and 2-2ERI integral evalua-
tion is small (e.g., ∼5%–10% of the total computational cost). For
the MPI-based RI-MP2 implementation, when increasing the num-
ber of MPI processes, the data are usually split into smaller chunks
for write/read operations and for subsequently feeding the matrix
multiplication subroutine with smaller chunks of input data. There-
fore, increasing the number of MPI ranks might implicitly reduce
the overall performance.

Modern multicore compute nodes usually have ∼64–72 cores
with ∼125 GB to 250 GB of memory/node. For the pure MPI model,
if the number of MPI ranks created on each node is equal to the
number of cores, each rank can only use ∼1–2 GB in the memory
address space. Additionally, each MPI rank needs copies of most
data (e.g., common blocks for AO and auxiliary bases, MO vec-
tors, density matrices). For calculations that need large memory, the
pure MPI code has to be kicked off with a small number of ranks,
which subsequently wastes a large number of CPU cycles. For the
hybrid MPI/OpenMP model, only a small number of ranks (usu-
ally just one rank) are created on each compute node; each rank
then spawns a team of threads that can share the same memory
address space. Therefore, both memory and CPU cycles are used
efficiently in the hybrid MPI/OpenMP model. This is particularly
important in the context of the fragmentation methods since in most
cases, large data structures in each fragment computation are usu-
ally well fitted to the node memory that completely removes the
time-consuming write/read operation to/from disk file/distributed
memory. Therefore, in most fragmentation RI-MP2 calculations,
all fragments can be treated locally on one (logical) compute node
that significantly improves the performance of the implementation.
When data structures are not fit into the node memory, the large
shared memory of the MPI/OpenMP model still facilitates large
chunks of distributed arrays to be copied to node memory for com-
putation, which is still much more efficient than copying small tiles
of data many times from distributed arrays to the replicated arrays in
a pure MPI treatment. Benchmark calculations on water clusters of
∼2200 water molecules using 8–700 64-core KNL nodes showed that
the new MPI/OpenMP FMO/RI-MP2 energy code17 implemented
in GAMESS has gained a speed-up of ∼10×. For the gradient,18 the
speed-up is ∼4–8×.

Since 2018, the US Department of Energy (DOE) has started
operating and deploying GPU-based supercomputers with vendor
optimized programming models such as CUDA, HIP, and SYCL.
However, due to their limited functional portability, it is challeng-
ing for HPC application developers to maintain their applications
in an efficient and effective way across various computer archi-
tectures. Directive-based programming models for accelerators can
be a solution. In terms of the RI approximation, the computa-
tional core of the MP2 correlation energy evaluation is the matrix
multiplication, which is supported by several GPU linear algebra
libraries (e.g., NVIDIA cublas). The cost of 3-index and 2-index
2-electron repulsion integrals is about 5%–10% of the total cost.
Therefore, in an initial effort to port GAMESS (Fortran) to GPUs,102

all essential matrix multiplication operations in the RI-MP2 energy
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kernel have been restructured and offloaded to GPUs using OpenMP
and OpenACC GPU-offloading models and multiple linear algebra
libraries. The benchmark calculations for clusters of 30–60 water
molecules and fullerene (C60) show that the speed-up of the GPU
RI-MP2 kernel on a single V100 GPU relative to the MPI/OpenMP
RI-MP2 energy calculation on a P9 socket (22 cores, 88 threads) is
∼20×; the speed-up relative to the pure MPI RI-MP2 energy code
on a P9 socket (22 cores) is ∼60×. This study has demonstrated
that directive-based offloading implementations can perform near
the GPU/CPU theoretical speed-up based on the machine peak
ratios.

B. Coupled cluster methods
GAMESS allows for a wide variety of calculations based on the

coupled-cluster (CC) theory and its extensions to excited, electron-
attached, and ionized states via the equation-of-motion (EOM) for-
malism. This includes CC and EOMCC wave functions and energies
as well as properties other than energy, and, in the ground-state
case, larger polyatomic systems treated with the local correlation
cluster-in-molecule (CIM) formalism.

1. Ground-state calculations
All of the GAMESS ground state CC options, which have

been implemented in Refs. 103–111, are based on the exponential
wave function ansatz112,113 of the single-reference CC theory,114–119

|Ψ0⟩= eT |Φ⟩, where T = ∑N
n=1 Tn is the cluster operator, Tn is

the n-particle−n-hole (np–nh) or n-tuply excited component of T,
N is the number of correlated electrons, and |Φ⟩ is the reference
determinant defining the Fermi vacuum, which is usually obtained
in HF calculations of the restricted (RHF), restricted open-shell
(ROHF), or unrestricted (UHF) types.120,121 The CC options in
GAMESS allow for RHF103–111 and ROHF109–111 references, although
the spin-integrated CC subroutines were written in a generic way,
which could be interfaced with restricted as well as unrestricted
references. The spin-adapted implementations of the closed-shell
CC codes103–108 are faster than the corresponding spin-integrated
implementations by a factor of 2–3.

The ground state CC options in GAMESS include both the con-
ventional approaches, such as the CC method with doubles (CCD) in
full and linearized forms,116–118,122,123 the CC approach with singles
and doubles (CCSD),124 where T is truncated at the T1 + T2 com-
ponents, and the widely used perturbative CCSD(T) correction,125

and the more robust renormalized CC (R-CC) and completely
renormalized CC (CR-CC) triples corrections to CCSD.103–109,126,127

The GAMESS CC options also include the conventional, renormal-
ized, and completely renormalized CCSD(TQ) levels correcting the
CCSD energies for a combined effect of the triply and quadruply
excited clusters.104–106,126–133

Among the CR-CC methods, one that is especially important
is the CR-CC(2,3) triples correction to CCSD,107–109,134 which is at
least as accurate as CCSD(T) for molecules near their equilibrium
geometries and for non-covalent interactions, while being much
more robust than CCSD(T) when chemical bonds are stretched
or broken and when chemical reaction pathways are examined.
CR-CC(2,3) is recommended as a substitute for CCSD(T), espe-
cially because computational costs of running CR-CC(2,3) are no
more than twice the costs of the analogous CCSD(T) calculations.

Another bonus of using CR-CC(2,3), as an alternative to CCSD(T),
is the fact that, along with the accurate triples correction to CCSD,
the user running CR-CC(2,3) gets access to the one-body reduced
density matrix (1-RDM), right natural orbitals and their occupa-
tion numbers, Mulliken and Löwdin populations, bond orders, and
electrostatic dipole moments, calculated at the CCSD level. The
linearized and full CCD, CCSD(T), R-CCSD(T), CR-CCSD(T), R-
CCSD(TQ), and CR-CCSD(TQ) are implemented in GAMESS for
closed-shell RHF references only.103–106 The CCSD and CR-CC(2,3)
codes work for both RHF and ROHF reference determinants, allow-
ing one to perform such calculations for closed- and open-shell
systems,107–109,134–136 obtain the CR-CCSD(TQ) and CR-CCSD(T)
energies, and add the quadruples (+Q) correction, defined as [CR-
CCSD(TQ)–CR-CCSD(T)], to the CR-CC(2,3) energy, as in the
CR-CC(2,3)+Q approximation.132,137

One of the most recent additions to GAMESS, which is par-
ticularly helpful when the CR-CC(2,3) theory level is insufficient
due to the more substantial coupling among the singly, doubly,
and triply excited clusters, i.e., when the full CCSDT-type treat-
ment is required but full CCSDT is too expensive, is the CC(t; 3)
option.110,111,138 In CC(t; 3), one corrects energies resulting from
the active-space CCSDt calculations, in which T includes all sin-
gles (T1), all doubles (T2), and a subset of triples (a subset of T3
amplitudes) defined using active orbitals,139,140 for the remaining,
predominantly dynamical, triple excitations that have not been cap-
tured by CCSDt. Having the leading T3 amplitudes in it, the CCSDt
approach alone is already often very accurate, especially when non-
parallelity errors characterizing potential energy surfaces relative to
its CCSDT parent are examined. CC(t; 3) improves the CCSDt calcu-
lations even further, being essentially as accurate as full CCSDT for
both relative and total electronic energies, even in situations involv-
ing bond breaking, at a fraction of the computational cost.110,111,138

CCSDt becomes CCSDT141 when all orbitals used to select T3 ampli-
tudes are active. Therefore, the CCSDt codes in GAMESS allow one
to run full CCSDT calculations as a byproduct. When the active
orbital set (which the user defines in the input) is empty, CCSDt
= CCSD and CC(t; 3) = CR-CC(2,3). The CCSDt and CC(t; 3)
codes in GAMESS, which, unlike other GAMESS CC and EOMCC
options, were implemented using automated formula derivation and
implementation software, work for both RHF and ROHF refer-
ence determinants, allowing calculations for closed- and open-shell
species.

2. Excited states
GAMESS can perform a variety of calculations for excited

electronic states, which are based on the EOMCC wave function
ansatz.142 Among the EOMCC methods implemented in GAMESS
are the basic EOMCCSD approximation,142 available for both RHF
and ROHF references,143–147 and the variety of CR-EOMCC and
δ-CR-EOMCC triples corrections to the EOMCCSD total and exci-
tation energies,127,143–147 which can be run at this point for RHF
reference only. If the user is interested in non-singlet states of a
closed-shell system or singlet as well as non-singlet states obtained in
a single calculation, using the open-shell EOMCCSD codes with the
ROHF S = 0 reference determinant is the only option in GAMESS
at this time.147 One can also use the open-shell EOMCCSD/ROHF
codes for excited states of molecules with non-singlet (e.g., doublet)
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ground states, but one has to keep in mind that the resulting wave
functions will not be spin adapted. If the user is interested in rig-
orously spin-adapted CC/EOMCC calculations for the ground and
excited states of radicals or systems that can formally be obtained
by adding one electron to or removing one electron from the
corresponding closed-shell core, choosing the electron-attachment
(EA) and ionization potential (IP) EOMCC options is the best
idea.

EOMCCSD is reasonably accurate for excited states dominated
by one-electron transitions, but it fails whenever the excited states of
interest have significant double excitation character or excited-state
potentials along bond breaking coordinates are examined, produc-
ing errors in the excitation energies that usually exceed 1 eV, being
frequently much larger.127,129,131,143–145,147,148 Even when excited state
wave functions are dominated by one-electron transitions, EOM-
CCSD is not fully quantitative, giving errors on the order of
0.3–0.5 eV in many cases.148 One can rectify these problems by
turning to higher EOMCC levels, represented in GAMESS by the
aforementioned CR-EOMCC and δ-CR-EOMCC triples correc-
tions, which are more robust, especially when two-electron excita-
tion components become more substantial, than the perturbative
methods of the EOMCCSD(T)149,150 or CC3151 type.127,129,131,143,147

3. Electron-attached and ionization-potential
equation-of-motion coupled-cluster approaches

One of the most useful features of the EOMCC wave function
ansatz is the possibility to extend it to open-shell systems around
closed shells, such as radicals and cations or anions of closed-
shell species, which can formally be obtained by attaching an elec-
tron to or removing an electron from the underlying closed-shell
core. This can be done by replacing the particle-conserving form
of the Rμ operator of EOMCC, which excites electrons from the
occupied to unoccupied orbitals in the reference, by its particle-
nonconserving EA (electron attachment) or IP (ionization) exten-
sions. Due to the use of a closed-shell reference wave function, which
in the EA and IP EOMCC GAMESS options,152–154 is the CCSD
ground state of the underlying closed-shell core, the EA-EOMCC
and IP-EOMCC methods provide an ideal framework for perform-
ing orthogonally spin-adapted calculations for radicals and cations
or anions of closed-shell species. They are especially useful in deter-
mining the electronic spectra of radicals145,152–154 and photoelectron
spectra.155,156

The EA and IP EOMCC options in GAMESS include EA-
EOMCC(2p–1h) and EA-EOMCC(3p–2h) in the EA case and IP-
EOMCC(2h–1p) and IP-EOMCC(3h–2p) in the IP case, where sym-
bols in parentheses indicate the truncation level. The higher-level
EA-EOMCC(3p–2h) and IP-EOMCC(3h–2p) approaches are espe-
cially useful, since they prevent failures of the basic EA-EOMCC(2p–
1h) and IP-EOMCC(2h–1p) approximations when the relevant
electron attachment/ionization processes are accompanied by signif-
icant electron relaxation effects in the closed-shell core, which is the
case in nearly all electronic states of radicals152–154 and in the electron
attachment and ionization processes in photoelectron spectroscopy
involving higher-energy shake-up states.155,156 When running the
higher-level EA-EOMCC(3p–2h) and IP-EOMCC(3h–2p) calcula-
tions, computational costs may become a significant bottleneck.
In the spirit of other active-space EOMCC methods,140,157–161 this
issue is addressed in GAMESS by using active orbitals to select the

dominant Rμ ,3p-2h and Rμ ,3h-2p components.152–154 It is recom-
mended to use the active-space EA-EOMCC(3p–2h) and IP-
EOMCC(3h–2p) approaches, which have costs on the order of
CCSD or EOMCCSD times a small prefactor.

4. Properties other than energy
GAMESS CCSD and EOMCCSD codes allow for analytic

calculations of properties other than the energy142,144 (available
for closed-shell systems, as described by RHF orbitals). GAMESS
prints a number of useful ground and excited state properties,
such as dipole moments, Mulliken and Löwdin populations, bond
orders, natural orbitals and natural orbital occupation numbers,
transition dipole moments, and dipole and oscillator strengths, to
name a few examples. Since the CC and EOMCC 1-RDMs are
not Hermitian, calculations of the dipole and oscillator strengths
require that the relevant |⟨Ψμ|θ|Ψν⟩|2-type expressions are rep-
resented as ⟨Ψμ|θ|Ψν⟩⟨Ψν|θ|Ψμ⟩, which is exactly what GAMESS
does. In analogy to the CC and EOMCC states, one has to
distinguish between the left and right natural orbitals in deter-
mining, for example, many-electron densities. To minimize the
amount of output, only right natural orbitals are printed in the
main output file. This is not a major limitation though, since
GAMESS also prints the complete set of 1-RDMs and transition
1-RDMs γqp(μ, ν), as defined above, in a RHF molecular orbital
(MO) basis in the auxiliary output file. Electrostatic properties,
such as dipole moments and (hyper)polarizabilities, can also be
determined using finite-field calculations. Geometry optimizations
and transition-state searches can be performed using numerical
derivatives.

5. Local correlation cluster-in-molecule approaches
The CC and EOMCC calculations using canonical RHF, ROHF,

or other delocalized MOs may become prohibitively expensive when
larger many-electron systems are considered. For example, most of
the methods described above have computational steps that scale
as the sixth or seventh power of the system size, N, with memory
requirements scaling as N4. This is addressed in GAMESS with the
help of fragmentation methods, as discussed in Sec. II, and the local
correlation CIM methodology,23,162–168 which is capable of reduc-
ing the high polynomial costs of CC calculations using delocalized
HF orbitals to steps that scale linearly (or even sublinearly) with the
system size, N.

The basic idea of all CIM-CC and CIM-MPn methods,23,162–168

including those implemented in GAMESS,23,163–167 is the obser-
vation that the total correlation energy of a large system or any
of its components, such as the triples correction of CCSD(T) or
CR-CC(2,3), can be obtained as a sum of contributions from the
occupied orthonormal localized MOs (LMOs) and their respec-
tive occupied and unoccupied orbital domains that define the CIM
subsystems.

All CIM approaches result in straightforward algorithms in
which, beginning with the AO → MO integral transformation and
ending up with the final CC or MPn work, the CC or MPn cal-
culation for a large system is split into independent and rela-
tively inexpensive calculations, in analogy with other fragmentation
approaches for CIM orbital subsystems, which can easily be exe-
cuted in parallel (on multiple cores or multiple nodes, or both). The
final correlation energy of the entire system is determined by adding
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correlation energy contributions extracted from the calculations for
the individual CIM subsystems. They are characterized by the lin-
ear scaling of the computational time with the system size, when
a single-level CIM-CC or CIM-MP2 approach is used,23,163,164,166

memory requirements that do not grow with the size of the sys-
tem,23,164,166 coarse-grain parallelism, which can be further enhanced
by the fine-grain parallelism of each CIM subsystem calculation, and
the purely non-iterative character of the local triples and other per-
turbative energy corrections, which is achieved in GAMESS via the
concept of quasi-canonical subsystem MOs.23,164 They can be made
even less expensive, leading, de facto, to sublinear scaling algorithms,
when multi-level CIM schemes mixing higher- and lower-order
methods are employed.165 The CIM methodology implemented in
GAMESS also allows one to combine canonical (e.g., MP2 or CCSD)
calculations for the entire system, which can be run in parallel, with
local calculations for subsystems that require a higher-level [e.g.,
CR-CC(2,3)] correlation treatment.167

The CIM methods implemented in GAMESS include MP2,
CCD, CCSD, CCSD(T), and CR-CC(2,3) for closed-shell systems
and CCSD and CR-CC(2,3) for open shells. The main parameter
ζ controlling the design of CIM subsystem domains can be varied
by the user (the canonical limit is obtained when ζ → 0), although
GAMESS provides a default, which is often a good starting point.
The GAMESS CIM codes can be executed sequentially or in parallel,
and they can be combined with the FMO method, as described in
Sec. II.

C. ORMAS, ORMAS+MP2, CEPA
The Occupation Restricted Multiple Active Space (ORMAS)22,169

approach is a configuration interaction (CI) method that, as the
name implies, (1) divides the orthogonal orbitals of a system into
a number of ORMAS groups (OGs) and (2) allows the electron
occupation of each OG to vary between minimum and maxi-
mum limits. The number of OGs, their constituent orbitals, and
occupation minima/maxima can be arbitrarily chosen by the user
(within logical limits). In this way, a very diverse set of CI
and MCSCF wave functions can be constructed and optimized.
The implementation is determinant based, direct, and parallel so
that several billion determinants can be included in a calcula-
tion. The types of wave functions that can be optimized include
ORMAS0 (constant number of electrons in each OG, e.g., groups
of bonding/antibonding orbitals), ORMAS0-SD (SD = single and
double excitations out of the ORMAS0 space), and CIx/MR-CIx
(x = desired maximum electron excitation level) for which orbital
optimization is also possible. More recently, single reference (SR)
and multireference (MR) coupled electron pair approximation
(CEPA) methodologies were added to the ORMAS module.170 Three
popular approaches are available: CEPA(0),171 average coupled
pair functional (ACPF),171 and averaged quadratic coupled-cluster
(AQCC).172

A significant enhancement to the ORMAS method is the abil-
ity to include second-order perturbation theory energy corrections
(ORMAS-PT2).24 Then, large active spaces can be used in MCSCF
reference functions, e.g., full valence or full π, and dynamic corre-
lation subsequently accounted for via PT2 corrections in the style
of MRMP2/MCQDPT2.173,8 Thus, for large systems it is possible to
cheaply compute accurate properties such as binding/dissociation

energies, transition state barrier heights (including for bond form-
ing/breaking), and excited state energies. With regard to the lat-
ter, one efficient route is to use state-averaged MR-CISD reference
wave functions (full-valence or −π) in which the occupied orbitals
are optimal. Additionally, energies of different spin states can be
simultaneously determined. Another useful feature is that solvent
effects can be included via the PCM4 through MCSCF wave func-
tion optimization174 and one-electron integral modification. The
ORMAS-PT2 implementation follows the style of the analogously
programmed MRMP2/MCQDPT methods175 and is determinant
based, direct, and parallel.

D. Correlation energy extrapolation
by intrinsic scaling

The Correlation Energy Extrapolation by Intrinsic Scaling
(CEEIS) method of Bytautas and Ruedenberg176 is a powerful pro-
cedure for the recovery of the full configuration interaction energy,
EFCI . CEEIS is based upon the exact expansion of the FCI energy as
a sum of CIx excitation level energy contributions,

EFCI
= E(0) + ΔE(1, 2) +∑x≥ 3 ΔE(x), (5)

where E(0) is the reference energy (single determinant or multi-
configurational) and excitation levels are shown in parentheses. The
energy difference∆E(1,2) = E(2)− E(0) represents the CISD (or CI2)
correlation energy, and ∆E(x) (x ≥ 3) denotes the energy lowering
when going from CI(x − 1) to CIx, i.e., ∆E(x) = E(x) − E(x − 1).
In the CEEIS method, ∆E(1,2) and ∆E(3) are computed exactly and
∆E(x) for x > 3 are extrapolated from energy differences ∆E(x|m)
= E(x|m) − E(x − 2|m). The latter two quantities are obtained from
CIx and CI(x − 2) computations in which electrons are only allowed
to excite into a number of active virtual orbitals m that is less than
the total number M. The crux of the CEEIS method is the discovery
that ∆E(x − 2|m) and ∆E(x|m) are linearly related as m approaches
M, so that ∆E(x) = ∆E(x|M) can be determined from ∆E(x − 2),
and ∆E(x − 2|m), ∆E(x|m) over a range of m. Therefore, when it
is not possible to compute CIx energies in the full basis, they can
be accurately determined via far cheaper computations. Further-
more, by gradually increasing x, estimates of FCI energies can be
obtained.

An important consideration for CEEIS is the generation of
appropriate virtual orbitals following optimization of the refer-
ence wave function. The recommended approach is to perform
a preliminary CISD calculation, compute the corresponding one-
particle density matrix, and diagonalize the virtual–virtual block
to obtain natural orbitals for the virtual space (VSDNOs). These
VSDNOs are then ordered according to decreasing occupation
numbers.

An automated CEEIS procedure has been implemented in
GAMESS where single determinant and MCSCF zeroth-order func-
tions can be used. The values of x and m are specified by the user;
however, these should be chosen carefully so that the changes in
∆E(x − 2|m) and ∆E(x|m) are linearly proportional. Ideally, the full
CISDT (or CI3) energy should be computed for high accuracy, but
if this is not possible, it can be extrapolated from the CISD energy.
The CEEIS method has been used to determine benchmark-quality
ground state properties for a variety of molecules176–180 and has also
been generalized for multiple electronic states via the use of state
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averaged reference functions.181,182 CEEIS has also been utilized for
the identification of compact and accurate CI wave functions.8

E. Analysis of complex wave functions by
reconstruction in terms of quasi-atomic orbitals

While accurate computations of energetics and properties are
an essential goal of ab initio methods, equally vital is the deduc-
tion of insights in order to (1) translate the complex wave functions
into elementary, familiar bonding concepts, and (2) conceptualize
rules and trends in chemistry. Over the last several decades, Rue-
denberg and co-workers have evolved comprehensive approaches
to reconstitute molecular wave functions and energies in terms of
quasi-atomic orbitals. Many of these methods have been incorpo-
rated in the GAMESS package, and a synopsis of the available tools
follows.

In the late 1970s, Ruedenberg et al. showed that Full Optimized
Reaction Space (FORS) wave functions (i.e., full-valence active space
MCSCF) intrinsically incorporate a set of minimal basis orbitals
that resemble deformed, quasi-atomic orbitals (QUAOs).183–185 Sub-
sequent to FORS optimization, QUAOs can be generated in sev-
eral ways including (1) direct localization of the molecular orbitals
(MOs), for which there are several available approaches in GAMESS
including the Edmiston–Ruedenberg method,186 and (2) optimal
alignment of the MOs to free-atom orbitals via singular value
decomposition (SVD).12 QUAOs can also be formulated for wave
functions that are simpler than FORS, viz., Hartree–Fock12 and
less than full valence MCSCF,187 and rely on the generation of
valence-virtual orbitals (VVOs).80,188 The VVOs are extracted from
the unoccupied virtual orbitals so that they, together with the occu-
pied orbitals, span an orbital space that is an excellent approxi-
mation to the full valence, or internal, space. Once obtained, it is
usually necessary to orient the QUAOs on each atom so that they
exhibit the global bonding pattern of the molecule (e.g., form bonds
with other atom QUAOs or become lone pairs).189,190 This orienta-
tion is accomplished with a completely unbiased, purely mathemati-
cal, method that uses no intuitive information about the molecule
whatsoever. Finally, the first-order density matrix is expressed in
terms of the oriented QUAOs to reveal qualitative and quantitative
chemical data such as atom charges, non-bonding/inactive orbitals,
and bond types and strengths. Covalent bond strengths can also be
quantified by a new measure called the kinetic bond order that cal-
culates the energy lowering due to interference between oriented
QUAOs.187

All of the aforementioned methods are available in GAMESS
and have been used to study a series of diverse molecules to eluci-
date the inherent bonding patterns at minima and along reaction
surfaces.191–196 More recently, the methodology has been expanded
to sixth row atoms.197,198 Complex techniques that resolve binding
energies into intra-atomic and interatomic parts have also been for-
mulated and utilized to uncover the physical origins of covalent
binding.199,200

F. Spin-flip and spin-correct spin-flip
In most cases, the proper description of non-dynamic cor-

relation requires the use of multi-reference methods.201 Although
several multi-reference methods are available in GAMESS, their

exponential cost makes them computationally prohibitive, limit-
ing such methods to relatively small systems and small active
spaces. The spin-flip (SF) family of methods, introduced by Krylov
in 2001,202–204 was developed as a possible alternative to multi-
reference methods, without the multi-reference cost. In contrast to
conventional multi-determinant approaches, SF methods rely on a
high-spin reference determinant (MS > 0), which, through a series of
spin-flipping excitations (ΔMS < 0), generates a multi-determinant
wave function of a lower multiplicity. The multi-determinant nature
of the final wave function, as well as the high-spin starting orbitals,
allows SF methods to capture multi-reference effects within a single-
reference formalism. Spin-flip has been implemented within sev-
eral quantum chemistry methods, including configuration inter-
action (SF-CI),202,205,206 time-dependent density functional theory
(SF-TDDFT),207 and coupled cluster (SF-CC).203,208,209

Figure 1 gives a graphical representation of the single spin-flip
procedure.

Due to their simplicity and speed, SF-CIS and SF-TDDFT
(implemented within the Tamm–Dancoff approximation) are the
most popular iterations of the SF methods. Both methods are avail-
able in GAMESS. This includes energies and analytic gradients, as
well as solvent effects through PCM,210 or the effective fragment
potential (EFP).59,211 These methods have been used to successfully
describe bond-breaking, transition state geometries, excited states,
and geometries of conical intersections, both in the gas phase9,212

and in solution.213

A significant disadvantage of SF methods is that they suffer
from spin-contamination. The spin-flip procedure shown in Fig. 1
ensures that the final SF wave function is an eigenfunction of the
ŜZ operator, but not necessarily an eigenfunction of the Ŝ2 opera-
tor. This is evident from the second half of determinants (v–viii) in
Fig. 1. In consequence, the final SF wave function is often a mix-
ture of different multiplicities. Moreover, the spin-contamination
is inconsistent and often hard to predict, particularly at geometries
where degenerate configurations are important. Because of its draw-
back, a variety of approaches have been suggested to correct the
spin-contamination of SF methods.205,206,214,215

FIG. 1. A visual diagram of a single spin-flip procedure.
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The SF-ORMAS method11,216 was introduced in GAMESS to
correct the spin-contamination problem inherent in SF-CI meth-
ods. As the name suggests, SF-ORMAS is the spin-flip variant of the
ORMAS-CI method, introduced by Ivanic in 2003.22,169 ORMAS is a
general determinant-based CI algorithm that allows for the partition
of the orbital space into arbitrary subspaces, each constrained by a
minimum and maximum electron occupation. This makes a variety
of CI schemes possible within a single computational formalism. The
SF-ORMAS variant functions similarly to the ORMAS-CI method
but imposes the additional constraint that all generated determi-
nants must be of a lower multiplicity (ΔMS < 0) than that of the
reference determinant (i.e., the “spin-flip” constraint).

The SF-ORMAS method not only corrects the
spin-contamination problem, but due to the flexibility of the
ORMAS algorithm, allows for a variety of SF-CI schemes. SF-
ORMAS can be supplemented with a perturbation correction
(termed SF-MRMP2) to account for dynamic correlation that is nor-
mally neglected from most SF schemes. Energies are available in
both the gas phase and in solution (via the EFP or PCM methods),
whereas analytic gradients are available only for the gas phase.216

Recently, non-adiabatic coupling matrix elements (NACMEs) were
also implemented for the SF-ORMAS method.217

SF-ORMAS was shown to successfully describe minimum and
transition state geometries, diradical states, single and multiple
bond-breaking, and low-lying excited states, with accuracies often
matching those of methods such as CASPT2 and MRCI.11 Conical
intersections optimized with SF-ORMAS are comparable to those
optimized by multi-reference methods. The recently implemented
NACME also shows good qualitative accuracy compared to the
NACME of methods such as CASSCF and MRCI.217 This strongly
suggests that the SF-ORMAS method is suitable for the study of
non-adiabatic effects.

G. Quantum Monte Carlo
As part of a Department of Energy Exascale Computing Project

(ECP), the GAMESS EFMO code has been interfaced with the quan-
tum Monte Carlo (QMC) program suite QMCPACK. This com-
bined QMC-EFMO method218 inherits the advantages of the two
methods: the high accuracy of QMC and favorable computational
scaling of EFMO.

The QMC method is a family of stochastic approaches for solv-
ing the Schrodinger equation.219 The statistical uncertainties of the
predicted QMC properties (e.g., the energy of a molecule) can be
estimated and controlled. Thus, the QMC results are typically very
reliable, with an accuracy that is typically below 1 kcal/mol.220,221

The QMC method has a favorable scaling of computational
time with respect to the number of electrons that is close to
cubic.222,223 In addition, the QMC algorithms due to their stochas-
tic nature are easy to make parallel and are consequently ideally
suited for massively parallel computers. The QMC parallelization
compensates for the fact that the pre-factor, i.e., the constant of pro-
portionality in front of the cubic scaling factor, is significantly larger
than that for HF and DFT. Overall, due to its high accuracy and
favorable computational scaling, the QMC method is an attractive
alternative to the more traditional ab initio methods.

The computational scaling of QMC can be substantially
reduced by the use of fragmentation methods. In the QMC-EFMO

method, the energy is computed as in any EFMO computation but
with QMC instead of a post-HF method for the correlation energy
of the monomers and dimers.

The QMC-EFMO method is implemented through an integra-
tion of GAMESS and QMCPACK programs. The molecular system
is first fragmented in GAMESS. Next, a stream of QMC correlation
energy evaluations on monomers and dimers are done in paral-
lel by an initial calculation by GAMESS followed by a sequence of
QMCPACK calculations. Ultimately, all calculations are assembled
in the final QMC-EFMO energy result.

The QMCPACK–GAMESS integration is based on Python and
Fireworks.224 Fireworks is a workflow automation package writ-
ten in Python that utilizes the MongoDB database system.225 The
Python/Fireworks scripting automates the workflow of GAMESS
and QMCPACK input files creation, program runs, and output
files parsing and thus achieves a seamless integration of the two
programs.

A double-basis approach following Ref. 226 is used in the
QMC-EFMO calculations. For the QMC correlation energy, i.e.,
the QMC calculations by QMCPACK and the preliminary HF by
GAMESS, the Burkatzk–Filippi–Dolg (BFD) effective core potential
basis set227 is used. For the generation of the EFP parameters in the
initial EFMO calculation by GAMESS, the 6-311++G(2df,2pd) basis
set is used.

QMC-EFMO is a method with computational scaling that is
close to linear while retaining almost entirely the QMC correlation
energy. The QMC-EFMO method is illustrated on ground-state cal-
culations on a four-water cluster, a set of larger water clusters, and
the excitation energy of micro-solvated acetone. In all of these exam-
ples, QMC-EFMO reproduces the full QMC correlation energies
and excitation energies very well.

H. Density functionals
GAMESS provides access to many popular density functional

approximations across the five rungs of Jacob’s ladder228 [e.g., local
density approximation (LDA), generalized-gradient approximation
(GGA), meta-GGA, hybrid GGA/meta-GGA, and double hybrid].
The 2012 excited-state benchmark by Leang et al.229 demonstrated
several density functional approximations available in GAMESS,
which have been implemented for both ground- and excited-state
calculations. Several new density functional approximations have
been added to GAMESS since the study by Leang et al., most notably
several variants of the Minnesota meta-GGA density functionals:
M11,230 M11-L,230 MN12-L,231 MN12-SX,232 MN15,233 and MN15-
L.234 In addition to several revised versions of the Minnesota meta-
GGA functionals: revM06,235 revM06-L,236 and revM11.237 Of the
Minnesota family of density functional approximations available in
GAMESS, only M11, M11-L, revM06, revM06-L, and revM11 are
limited to ground state calculations.

I. DFTB
Fragmentation methods greatly reduce the computer time

requirements for high-level ab initio and first principles energies
and gradients and allow their computation for large-scale systems,
thanks to near-linear scaling behavior with system size and effi-
cient parallelization techniques. Long time scale molecular dynamics
(MD) simulations on the other hand are still difficult to perform

J. Chem. Phys. 152, 154102 (2020); doi: 10.1063/5.0005188 152, 154102-13

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

even with the help of systematic fragmentation approaches.238 This
is because even the smallest possible fragment calculation of analyt-
ical gradients requires typically minutes, even on the fastest super-
computers available today, which means that a nanosecond MD
trajectory with million integration time steps would have to run
for almost one calendar year. Time cannot easily be “parallelized,”
in particular, when systems are studied in nonequilibrium or when
the time scales of chemical processes, such as diffusion, are inher-
ently slow. Therefore, it is necessary to use a computationally less
expensive electronic structure method that reduces the time for the
calculation of fragment energies and gradients by at least one order
of magnitude.

One such method that has recently become very popular is the
density-functional tight-binding (DFTB) method,239 since it avoids
the expensive calculation of electronic integrals by the way of a
two-center approximation, the use of a minimal valence electron
basis set, and Hamiltonian and overlap matrix elements, as well
as diatomic repulsive potentials. These parameters are all tabu-
lated as a function of interatomic distances for each chemical ele-
ment combination. The DFTB method comes in a range of fla-
vors, characterized by the order to which the electronic charge
density fluctuation is expanded in a Taylor series around a refer-
ence density (typically a superposition of atomic densities). DFTB1
is accurate to first order and does not depend on charge densi-
ties;240 DFTB2 is accurate to second order and contains Coulomb
interactions between charge fluctuations;241 and DFTB3 is accu-
rate to third order and contains additionally a charge-dependent
on-site self-interaction and a modification of the second-order
Coulomb interaction term.242 In addition, spin-polarization can be
introduced in all three flavors via the introduction of an inter-
action term between spin populations in different atomic orbital
shells, resulting in SDFTBn methodologies.243 Finally, a range-
separated treatment of the exchange energy was recently intro-
duced as the LC-DFTB2 flavor in analogy to, for instance, LC-
ωPBE, where the long-range correction “switches on” the Hartree–
Fock exchange.244 Fully analytic second-order energy derivatives are
available for all DFTB versions except for LC-DFTB2, providing
rapid and robust simulation of infrared and Raman spectra even
for open-shell systems.245 An implementation of time-dependent
DFTB (TD-DFTB) for the computation of the UV/Vis absorption
and emission spectra of systems containing several hundred atoms
is also available along with analytic first-order energy derivatives,
with and without the addition of the polarizable continuum model
(PCM).246

The computational bottleneck of DFTB is associated with find-
ing a self-consistent solution to the charge (and spin) density fluc-
tuations, which requires solving the generalized Kohn–Sham eigen-
value equations in the tight binding framework. This step scales
cubically with system size, similar to the parent DFT method, and
hence fragmentation is ideally suited to reduce this unfavorable scal-
ing. The resulting FMO-DFTB methods have been implemented in
GAMESS247–249 and allow quadratic time-to-solution for the calcu-
lation of quantum chemical atomic forces for very large systems.250

Both two- and three-body FMO expansions are available for all
DFTB versions.251 The code allows the use of the velocity Verlet
time integration algorithm for the long time scale MD simulations of
complex systems, such as, for instance, peptide folding dynamics,248

and a replica-exchange MD approach was also recently implemented

within GAMESS for use with DFTB to allow for more efficient phase
space sampling.35 This makes the DFTB-based quantum chemical
computation of free energy changes as a function of some inter- or
intramolecular coordinate [potential of mean force (PMF)] possible
at the selected level of DFTB or FMO-DFTB.

It is often said that “there is no free lunch,” and this is cer-
tainly the case for FMO-DFTB as well. The electronic and repul-
sive potentials have to be optimized for the required chemical
element combinations and the desired DFTB version, and the
parameter optimization toolkit252 will be released soon. In recent
years, machine learning parameterization techniques have been
developed and employed that improve the performance of the
DFTB flavors such that results comparable to traditional density
functional theory (DFT), correlated electronic structure methods,
or experimental data can be obtained.252 However, no matter to
what degree the DFTB parameters are optimized, the require-
ment of parameter transferability will always result in systematic
errors originating from the DFTB approximations themselves, such
as the use of a minimal basis set or the two-center approxima-
tion. To mitigate this remaining systematic bias, Δ-machine learn-
ing methodologies253 based on Behler–Parrinello neural network
(NN) corrections for DFTB energies and forces have been devel-
oped.254,255 Since systematic bias is less dependent on a given chem-
ical system or geometric configuration, the DFTB+ΔNN approach
is able to extrapolate from rather than interpolate among training
data. MD simulations based on FMO-DFTB+ΔNN are, therefore,
expected to achieve first principles or even higher-level accuracy
for the predictive study of the dynamics of chemically complex
systems.

J. Parallel coupled cluster
Coupled cluster (CC) theory121 provides very accurate results

in the computation of molecular energies and properties. The CC
method truncated at the single and double excitation level (CCSD)
and augmented with a noniterative perturbative treatment of triple
excitations, viz., the CCSD(T) method,125,256 is an accurate method
in quantum chemistry. Unfortunately, the steep scaling of the com-
putational costs of the CC methods, e.g., N6 for CCSD and N7 for
CCSD(T), where N is a measure of the system size, restricts their
applicability to chemically relevant problems. Adapting CC imple-
mentations to modern parallel computing architectures can effec-
tively surmount this barrier. The primary goal of a parallel CC
algorithm13,16,257–259 is to make an efficient utilization of the total
aggregate memory of a parallel computer for storing memory
demanding quantities, thus affording computations involving large
molecules and basis sets.

The existing parallel CCSD(T) implementation13 in GAMESS
is based on the third generation of the Distributed Data Inter-
face89 (DDI/3), which introduced shared memory capabilities for
multiprocessor nodes on top of the multinode distributed memory
model. The parallel CCSD(T) algorithm uses three types of stor-
ages for the requisite quantities: (a) distributed storage for large
two-dimensional arrays over a number of nodes in a parallel com-
puter (distributed memory), which has the largest storage capability
and also bears the largest communication overhead, (b) the shared
memory of each multiprocessor node, which can be directly accessed
and modified by all intranode processes, and (c) replicated memory
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of the parallel processes on a node, which has the smallest storage
capacity.

In the current GAMESS algorithm, the various classes of two-
electron repulsion integrals (2-ERIs) involving up to three virtual
molecular orbital (MO) indices are stored in the distributed mem-
ory. The four-virtual integrals ([VV|VV]), which present a memory
bottleneck, are not stored at all. The terms in the CCSD amplitude
equations involving these 2-ERIs are rather computed via an atomic
orbital (AO) integral-direct algorithm. Arrays of size scaling as N2

and N3, e.g., the T1 amplitude matrix, are stored in the replicated
memory of each parallel process. On the other hand, the T2 ampli-
tude matrix (storage scaling as N2

oN2
v , where No and Nv denote the

number of occupied and virtual MOs, respectively) is stored once per
node in its shared memory address. The workload pertaining to the
evaluation of the terms in the factorized CCSD amplitude equations
is distributed over nodes according to the distributed storage of the
2-ERIs. The workload on each node is further distributed among the
intranode processes. Importantly, the DDI/3 model employs Unix
System V semaphores for intranode communication rather than a
thread-based model (e.g., the OpenMP API260).

While the current parallel CCSD(T) algorithm was demon-
strated to achieve reasonable scalability for chemically interest-
ing problems in the limit of a large number of compute nodes,
there is room for further improvements. Current efforts are focused
in this direction. The distributed storage for the three virtual-
one occupied integrals ([VV|VO]) in the current parallel CCSD(T)
algorithm presents a memory as well as communication bottle-
neck. A pragmatic approach to reduce this bottleneck is to imple-
ment an AO integral-direct algorithm261 for the terms that involve
these 2-ERIs. Unlike the [VV|VV] integrals, the [VV|VO] inte-
grals appear in a larger number of terms in the CCSD ampli-
tude equations. A judicious regrouping of the various terms is
thus important for an efficient evaluation; for example, to com-
pute one group of terms involving the [VV|VO] integrals simul-
taneously with the evaluation of terms involving the [VV|VV]
2-ERIs. The existing code segments will be retained as much
as possible such that the AO integrals need not be evaluated
repeatedly.

Following the lead of the new RI-MP2 code discussed in
Sec. III A, the parallel CCSD(T) code will make use of a hybrid
DDI/OpenMP model by substituting the process-based parallelism
on each node with thread-based parallelism. In the DDI/3 model,
collective synchronizations over all intranode processes are applied
in order to retain the integrity of the data stored in the shared mem-
ory address of the node. With an increasing number of intranode
processes, the increased synchronization overhead becomes compet-
itive with the enhanced distribution of the computational workload
per node. For this reason, the intranode scalability of the existing
parallel CCSD(T) algorithm was found to be less than optimal.13

The synchronization overhead can be reduced by limiting the num-
ber of intranode processes to only a few (ideally one). Each process
then gets a larger amount of local memory, which permits a larger
amount of data to be replicated among them. The workload on each
process can then be suitably parallelized via OpenMP threads. As
threads communicate through a shared memory pool, an efficient
parallelization at a significantly lower interprocess communication
cost can be achieved by assigning a large team of threads to each
process.

Further improvements in the parallel CCSD(T) implementa-
tion can be achieved by making use of graphical processing units
(GPUs) to perform certain computations, which are both time con-
suming and memory expensive. GPUs facilitate a massive paral-
lelization of logically simple computational steps at very high speeds.
Contractions involving the [VV|VV] and [VV|VO] integrals with
cluster amplitudes will be performed by offloading these compu-
tations to GPUs. This will require enabling GPU offloading capa-
bilities within the parallel CCSD(T) algorithm. The use of modern
OpenMP standards will make this feasible. An alternative strategy
would be to obtain the 2-ERIs from the GPU-enabled integral
library named LibAccInt, which is currently under develop-
ment. This will accelerate the integral evaluation step. Further-
more, all steps involving contractions of the 2-ERIS with clus-
ter amplitudes could be offloaded to GPUs for the maximum
speed-up.

Efficient parallel algorithms will also be developed for the exist-
ing sequential CR-CC(2,3) implementation in GAMESS. As noted
above, the CR-CC(2,3) approach107 includes a noniterative cor-
rection for triple excitations on top of the CCSD energy via the
method-of-moments ansatz. For developing a parallel CR-CC(2,3)
algorithm, the key step is to parallelize the triples correction part. A
hybrid DDI/OpenMP model will be used for this purpose. Further
current developments in the CC methods within GAMESS include
the implementation of analytic gradients262,263 for the CCSD(T) and
CR-CC(2,3) methods. Massively parallel algorithms will be devel-
oped for gradient calculations using similar parallelization models
as outlined above.

Another important current development in the CC methodolo-
gies within GAMESS concerns a massively parallel implementation
of the CCSD(T) and CR-CC(2,3) methods employing the resolution-
of-the-identity (RI) approximation90,264 for the 2-ERIs. Within the
RI approximation, the 2-ERI matrix is approximated as products of
three-index tensors. The storage requirements for the three-index
integrals scale as N2Naux, with Naux denoting the size of the aux-
iliary basis set, in contrast to the N4 storage requirements for the
conventional four-index 2-ERIs.

The straightforward way to implement RI-CC methods265–269

would be to assemble and store the four-index 2-ERIs prior to
the iterative solution of the CCSD amplitude equations. While
this would allow for the use of the existing CC implementation,
such an algorithm does not take advantage of the reduced stor-
age of the 2-ERIs. An alternative strategy is to assemble the four-
index 2-ERIs as they are needed. Such an integral-direct algorithm
bypasses the large storage requirements for the 2-ERIs. However,
the repeated integral assembling steps in every iteration, the com-
putational cost of which scales as N5, should be minimized for
an optimum efficiency. This can be achieved by regrouping the
terms in the CCSD amplitude equations and formulating them
in terms of intermediates, which involve contractions between the
three-index 2-ERIs and the cluster amplitudes.266,269 The use of
these intermediates enables avoiding a direct evaluation of the
terms involving the [VV|VO] integrals. The evaluation of the term
involving the [VV|VV] integrals still remains the rate-determining
step in the RI-CCSD calculation. An AO integral-direct algorithm
will be developed for this purpose in which the four-index AO
integrals will be assembled from the prestored three-index AO
integrals.
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With the above strategy to fully exploit the reduced storage
requirements for the 2-ERIs, a parallel implementation of the RI-
CC methods would require significantly less distributed data storage
compared to the existing parallel CCSD(T) implementation. The
use of the total aggregate memory of a parallel computer for stor-
ing the 2-ERIs, as exploited in the DDI/3 model, is less important
for the RI-CC methods.19,97,98,270 The GDDI model partitions com-
pute nodes into groups, the size of which can be assigned accord-
ing to the needs at runtime. All quantities required for the RI-CC
calculations will be replicated among the groups, in this way elim-
inating the intergroup communication overhead. The three-index
2-ERIs will be distributed within each group. The workload on each
node will be distributed over a small number of processes so as
to maximize the associated shared memory per process. The com-
putation on each process will then be parallelized using teams of
OpenMP threads. One important advantage of using this hybrid
GDDI/OpenMP model is the scope of combining the RI-CC meth-
ods directly with the FMO approach, which is the final goal of this
work.

K. Interoperability
There are a few robust, no-cost or open-source, elec-

tronic structure packages available for ab initio molecular elec-
tronic structure computations. Among those program suites,
GAMESS,1 NWChem,271 PSI4,272 and CFOUR273 stand out as flag-
ship development platforms to perform highly accurate quantum
chemical computations and implement new electronic structure
approaches/models. Each of these programs contains millions of
lines of computer codes and has unique functionalities and capabil-
ities that have been developed over many years through the efforts
of many researchers. For example, GAMESS has been evolving for
almost four decades. However, there are tasks in ab initio elec-
tronic structure computations/models that are common to all pro-
gram suites. In order to minimize further development efforts (min-
imize duplicate efforts) and to maximize the efficacy of the unique
features, GAMESS has been interfaced with quantum chemistry
common driver and databases (QCDB274) to be interoperable with
the NWChem, PSI4, and CFOUR programs. QCDB is written in
Python.

GAMESS has been interfaced with QCDB in such a way that
one can generate input files for PSI4, NWChem, CFOUR, and
GAMESS using a common input syntax. These input files are user-
friendly and easy to use even for beginners. For example, an input
file to calculate the MP2/cc-pVTZ energy of the water molecule is as
simple as

h2o = qcdb.set_molecule("""
O
H 1 1.8
H 1 1.8 2 104.5
units au
""")
qcdb.set_options({‘basis’:‘cc-pVTZ’})
qcdb.energy(‘gms-mp2’)

In the above notation, ‘gms’ stands for GAMESS. One can do
the above computation in NWChem, PSI4, and CFOUR by changing

the ‘gms-mp2’ to ‘nwc-mp2’, ‘p4-mp2’, or ‘c4-mp2’, respectively. In
addition, QCDB can parse the output of those programs to produce
a common output. The flexibility of the input and output format
reduces extra effort for users to execute programs and manage data
seamlessly, regardless of the program.

The most beneficial part of the GAMESS-QCDB interface
is that users are able to perform ab initio electronic structure
calculations across multiple programs, taking advantage of the
unique features of each program. For example, one can perform
a very high-level benchmark computation on a molecular cluster
using the CCSD(T)/cc-pV[Q5]Z level in Psi4 and then do a post-
CCSD(T) correction using NWChem or corrections computed via
the EFMO approach, for larger molecular clusters, in GAMESS.
GAMESS–QCDB is beneficial to other programs as well. For exam-
ple, the GAMESS interface provides the EFP capability through the
GAMESS potential file generation (MAKEFP) and then running EFP
calculations on molecular clusters for the other programs.

There are some methods, of course, such as HF, DFT, MP2,
and coupled-cluster methods that are common to the GAMESS,
NWChem, PSI4, and CFOUR programs. However, there are unique
features in each program as well.

IV. MODERN PROGRAMMING PRACTICES
As high performance computing enters the exascale era, new

paradigms must be adopted. This is especially true for widely used
electronic structure packages such as GAMESS. In addition to the
development of strategies for parallel computer coding, some of
which have been discussed in previous sections, consideration must
be given to the power consumption by massively parallel computers
(i.e., Dennard’s law275), which can be as costly on an annual basis
as the initial cost of the hardware. This means that strategies are
needed for minimizing the power consumption while at the same
time optimizing the time to solution. An equally important consid-
eration is how to optimize the development, testing, and distribution
of codes that are increasingly complex. These issues are discussed in
Secs. IV A and IV B.

A. Maximizing performance under power constraints
Energy consumption has become a major design constraint in

modern computing systems for which a power envelope has been
established between 20 MW and 40 MW. Hence, GAMESS scaling
capabilities have to take into account the efficient usage of the avail-
able power allocation, in addition to the efficiency of calculations.
A way to achieve efficient power usage has been implemented in
GAMESS such that the operating core frequency and voltage are
reduced to the minimum276 for the cores hosting the data-servers
because they do not participate in power demanding (computa-
tional) tasks. Recently, power allocation strategies among DRAM,
GPU, and CPU have been proposed for the hybrid CPU–GPU LibC-
Chem implementation (See Sec. V) that targets full GPU utilization,
and thus, the GPU may require high priority in power utilization.
Previous experiments, however, showed that the highest priority
should be given to DRAM if (part of) a calculation is memory-
intensive, such as storing/reading the integrals, to avoid a huge per-
formance penalty.277 Then, the GPU gets the second priority for allo-
cating power to maximize the performance of GPU-intensive phase
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FIG. 2. The power consumption of the wat-19 calculation using the feedback strat-
egy when the power allocation is set to 315 W. The power shown is the sum of the
instantaneous GPU, CPU, and DRAM power, which are obtained from nvidia-smi
for GPU and from the Intel Running Average Power Limit (RAPL) interface for CPU
and DRAM.

of the application. Within the CPU power domains, the remaining
power budget is allocated in accordance with GAMESS calculation
performance at runtime.278 To determine the amount of power to
be allocated to the GPU, a feedback strategy is employed based on
current utilization of GPU components gathered using the NVIDIA
system management interface.

When power is allocated as per the above strategy, experi-
ments on a 28-core Haswell-EP platform equipped with a Kepler
K40m GPU with five different GAMESS/Libcchem calculations
showed that the strategy provided maximum performance even
with reduced power consumption. Specifically, an 11% reduction in
power consumption did not reduce performance at all, while a 17%
reduction in power resulted in only a 2% performance loss. Figure 2
shows the Libcchem power usage during an HF calculation of a 19-
water molecule cluster (Wat-19), when the total power budget was
set to 315 W (11% of the 351 W used with maximum power needed).

In summary, power re-allocation strategies have been success-
fully used in GAMESS Libcchem to improve its energy efficiency.

B. Software development process
1. Version control and source repository

The GAMESS development source code is hosted on the
GitHub collaborative development platform279 within a private

repository and is managed using the git280 distributed version con-
trol system. GAMESS employs the gitflow branching model281 with
separate dedicated branches for development and releases. Fork-
ing is disabled to ensure that all development undergoes continu-
ous integration, a software-engineering best practice of building and
testing every code change committed to a shared repository. With
respect to the gitflow branching model, all branches in GAMESS
with new commits undergo integration testing. Daily testing is per-
formed for the development and releases branches to ensure that
those branches are always in a stable state. More information regard-
ing how to contribute to the development of GAMESS may be found
at: https://www.msg.chem.iastate.edu/gamess/developers.html.

2. Continuous integration
GAMESS utilizes two continuous integration platforms for

integration testing: Travis282 and Jenkins.283 Travis is a cloud-based
continuous integration platform. For open source and academic
research codes, Travis provides access to a single cloud-based com-
pute instance for building and testing known as a worker. The
GAMESS Travis worker is configured to perform 5 build-tests on
a 64-bit instance running Ubuntu 14.04.5 LTS that varies the com-
munication model (e.g., sockets and MPICH MPI284), math library
(e.g., ATLAS285 and netlib286), and build option (e.g., non-threaded
and OpenMP-threaded GAMESS). For one of the build-tests, the
FTNCHEK static analyzer is used to analyze the Fortran code for
issues such as common block alignment, variable usage before ini-
tialization, and code formatting. A summary of the GAMESS Travis
worker build-test configuration is provided in Table III.

Each build-test compiles GAMESS using the GNU compiler
and performs validation testing using a small test set consisting of
serial and parallel runs. Although free and in the cloud (off-premise),
the Travis continuous integration platform has many limitations
such as available compiler and hardware support (e.g., no access to
GPGPUs) and testing restrictions (e.g., worker time-out if no output
is received for any 10-min time period).

To address the limitations of the Travis continuous integration
platform, an on-site installation of the Jenkins continuous integra-
tion platform was deployed and interfaced with local computing
resources to facilitate additional build-test configurations. For pull-
requests (code-integration requests) into the development branch,
Jenkins performs 6 build-tests in parallel running 64-bit Centos 7
that varies the compiler (e.g., GNU,287 Intel,288 and PGI289), commu-
nication model (e.g., sockets, OpenMPI,290 and Intel MPI291), and
math library (e.g., OpenBLAS,292 Intel MKL,293 and PGI BLAS289).

TABLE III. GAMESS Travis worker build-test configuration.

Tests

Math Comm. Build option Build Validation Static analysis

ATLAS Sockets Non-threaded Yes Yes Yes
ATLAS MPICH MPI Non-threaded Yes Yes No
Netlib Sockets Non-threaded Yes Yes No
Netlib Sockets Non-threaded Yes Yes No
ATLAS MPICH MPI Threaded Yes Yes No
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TABLE IV. GAMESS Jenkins build-test configuration for integration into the develop-
ment branch.

Tests

Compiler Math Comm. Build Validation

GNU OpenBLAS Sockets Yes Yes
GNU OpenBLAS OpenMPI Yes Yes
Intel Intel MKL Sockets Yes Yes
Intel Intel MKL Intel MPI Yes Yes
PGI Intel MKL OpenMPI Yes Yes
PGI PGI BLAS OpenMPI Yes Yes

All six build-tests are performed on the same CPU architecture.
Each build-test compiles the non-threaded version of GAMESS and
performs validation testing using a large test set consisting of 665
serial and 529 parallel runs with a test coverage of over 60% mea-
sured using gcov.287 A summary of the GAMESS Jenkins build-test
configuration is provided in Table IV.

A smaller set of appropriate build-tests configurations are per-
formed for LibCChem and OpenMP threaded development.

For pull-requests into the release branch (e.g., new scheduled
public release), multiple computing architecture (e.g., Intel Sandy-
bridge, Intel Haswell, Intel Skylake, AMD EPYC, and NVIDIA
GPGPU) testing is performed using the GNU compiler. Each CPU
architecture consists of four build-tests for the non-threaded build
of GAMESS. The OpenMP threaded build of GAMESS and the
LibCChem CPU-only build consist of two build-tests each. The
GPU-accelerated LibCChem build of GAMESS currently consists
of a single build-test using an NVIDIA GPGPU (e.g., K20, K40,
K80, or V100). A summary of the GAMESS Jenkins build-test
configurations for multiple computing architectures is provided
in Table V.

The total wall-time to complete all Jenkins build-tests in
Table III is ∼72 h and is dependent on resource availability. Due to
the heavy load placed on local computational resources, Jenkins can
only be triggered by a successful Travis session.

3. Testing framework
The GAMESS testing framework consists of a set of Python

scripts that provides the functionality of running GAMESS inputs
and parsing and validating the generated output. The Python parse
takes any GAMESS log file and extracts all predefined content and
stores the content into a validation file in JSON object notation. Dur-
ing testing, a generated log file is parsed and a similar JSON object
file is created containing the parsed values. The name of the log file
and the number of validation entries must match in order for valida-
tion to proceed. For each validation entry, the values are compared
and measured against the specified tolerance for each entry.

The testing framework is designed to work with unstructured
output commonly encountered when using scientific software. The
parsed content can be extended to accommodate new unstructured
output by defining new parse groups.

4. Portability and source code
GAMESS prides itself in being a highly portable quantum

chemistry code. End-users have the option of compiling from
source, using pre-compiled binaries, or obtaining a Singularity con-
tainer image.

GAMESS can be compiled with minimal third-party depen-
dences on many variants of 32-bit and 64-bit Linux, Apple, and
Microsoft Windows operating systems. At minimum, GAMESS
requires the C-shell, a C and Fortran compiler, and the GNU make
tool. The GAMESS build process is coordinated using several C-
shell scripts. These C-shell scripts have recently been integrated with
the GNU make tool to enable parallel compilation of the Fortran
sources files. The build process involves invoking a C-shell script,
config, which will prompt the end-user to provide the build target,
build directory location, binary name, compiler choice, math library
selection, communication mode (e.g., sockets or MPI), and addi-
tional build options (e.g., with the Michigan State Coupled-Cluster
Theory package, with OpenMP threading, or with LibCChem). The
latter process will generate a file, install.info, containing the build
configuration.

Pre-compiled GAMESS binaries are made available for 64-bit
Microsoft Windows users. These native binaries are prepared using
the latest PGI Community Edition compilers and provide end-users

TABLE V. GAMESS Jenkins build-test configuration for integration into the release branch.

Tests

Architecture Math Comm. Build option Build Validation

Intel Sandybridge Netlib Socket Non-threaded Yes Yes
Intel Haswell Netlib OpenMPI Non-threaded Yes Yes
Intel Skylake OpenBLAS Socket Non-threaded Yes Yes
AMD EPYC OpenBLAS OpenMPI Non-threaded Yes Yes
AMD EPYC Intel MKL OpenMPI Threaded Yes Yes
Intel Skylake Intel MKL OpenMPI Threaded Yes Yes
AMD EPYC Intel MKL OpenMPI LIBCCHEM CPU-only Yes Yes
Intel Skylake Intel MKL OpenMPI LIBCCHEM CPU-only Yes Yes
Intel Sandybridge + NVIDIA GPGPU Intel MKL OpenMPI LIBCCHEM Yes Yes
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with two options for statically linked math libraries (e.g., Intel MKL
or PGI BLAS). The only supported distributed data interface (DDI)
communication mode for Microsoft Windows is MPI; therefore,
end-users are required to install the Microsoft MPI library (MS-
MPI) provided with the pre-compiled GAMESS binary package.
Several Windows batch scripts, shortcuts, and step-by-step visual
instructions are provided with the pre-compiled GAMESS binary
package to help lower the barrier to learning how to deploy GAMESS
using the Windows Command Prompt.

5. Singularity container
Alternatively, through an agreement between GAMESS and

NVIDIA, end-users have the option of deploying GAMESS using a
GPU-enabled Singularity294 container image.295 The GAMESS con-
tainer image provided by NVIDIA contains a pre-configured and
pre-installed copy of GAMESS with the GPU-accelerated LibCChem
package. The GPU-enabled container image of GAMESS was made
available on the NVIDIA GPU Compute Cloud (NGCC) during its
inaugural launch at the Supercomputing 2017 conference.296 Appli-
cation containers are emerging technology, which have the poten-
tial to help improve code portability and reproducibility in scien-
tific computing. Scientific software developers can use application
containers to package and share images of their pre-configured
and pre-installed application along with all software dependences.
For scientific software with complex software dependences, such
as the GPU-accelerated LibCChem package (e.g., CUDA,297 Global
Arrays,298 BLAS, LAPACK,299 and HDF5300), application containers
can significantly lower the barrier to usage. As application container
technology becomes more available across operating system ven-
dors, GAMESS may consider offering a single container image as
a cross-platform solution.

V. LibCChem
The breakdown of Dennard301 scaling marked the begin-

ning of a new computational era in which the familiar latency-
oriented processor architectures were (almost completely) replaced
by throughput-oriented ones for performance purposes. Among
the latter, during the last two decades, GPUs302 have cemented
their status as near-ideal “number-crunching” machines, deliver-
ing the lion’s share of the FLOP performance achieved by the
most powerful supercomputers in the world. For example, Summit,
the fastest supercomputer in the world according to the Top500,
acquires 95% of its peak FLOP performance from its NVIDIA V100
GPUs.303

As computational hardware morphs into these novel, intrin-
sically parallel architectures, quantum chemical methods and their
underpinning implementations must evolve accordingly. GAMESS1

has started on this evolution via its use of LibCChem,14–16,304 a spe-
cialized C++ library designed for high-performance electronic struc-
ture theory computing on both CPUs and GPUs. Besides introduc-
ing object-oriented programming into GAMESS, LibCChem also
enables GPU usage through its use of the CUDA programming
model for execution on NVIDIA graphics cards. Currently, LibC-
Chem can execute a number of different quantum chemistry calcu-
lations on NVIDIA GPUs. These include the evaluation of electron-
repulsion integrals (ERIs) via the Rys quadrature algorithm,14

the Fock build step of Restricted Hartree–Fock (RHF) energy

calculations,15 the evaluation of MP2 energies,304 and the calculation
of RI-MP2 energies and gradients.

Recently, also a new GPU port path has been enabled directly
within GAMESS itself via the usage of OpenMP GPU offloading of
the hybrid MPI/OpenMP RI-MP2 (Fortran) code.102

In Secs. V A–V E, we discuss the GPU implementations in
LibCChem and GAMESS Fortran and their performance.

A. Integrals
The evaluation of integrals is arguably the most common bot-

tleneck in quantum chemistry.305,306 For this reason, efficient inte-
gral evaluation has been a historically prolific area of research307–331

leading to algorithmic enhancements that have been instrumental in
enabling quantum chemical calculations on increasingly large sys-
tems. In this section, we will focus on the GAMESS capability to eval-
uate ERIs on GPUs. Their sheer number—formally O(N4)—makes
their computation the most expensive step of an SCF procedure and
an obvious candidate for accelerator offloading.

1. Rys quadrature
The first algorithm for the evaluation of ERIs on GPUs in LibC-

Chem was implemented in 2010 by Asadchev et al.14 The code,
which is still operational, provides a high-performance Rys quadra-
ture algorithm in which memory access patterns and data reuse were
specifically optimized for GPUs. In the Rys quadrature scheme, ERIs
are evaluated as combinations of 2D-integrals (Rys integrals), which
are largely shared among different ERIs within a given integral class.
The LibCChem implementation maps each ERI class to a differ-
ent thread block. The Rys integrals are stored on a per-block basis
in the shared memory of the GPU, enabling their efficient reuse
(within a thread block) when constructing an ERI class. To further
improve performance, the Rys quadrature implementation in LibC-
Chem was designed to have two execution modes: a small and a
large angular momentum path. Within the small angular momen-
tum path, Rys integrals are evaluated using polynomial expressions
obtained by fully expanding the recurrence relations. These formulas
were then parsed through Sage,332 a Python package that performs
Common Subexpression Elimination (CSE). This way, the polyno-
mial expressions were simplified and reordered to maximize regis-
ter reuse. For high angular momentum classes, the 2D-integrals are
instead evaluated, as traditionally, in terms of recursion, and transfer
relations and then combined to form the ERIs. The Rys quadrature
integral code was later coupled with a novel Hartree–Fock algo-
rithm, which presented a maximum speed-up of 38.9× against the
GAMESS/Rys implementation. The GPU version of the algorithm
showed a single-core maximum speed-up of 17× against the CPU
version (vide infra).

2. LibAccInt
Currently, LibCChem can also evaluate ERIs via the Head–

Gordon–Pople (HGP) method due to the interface with the LibAc-
cInt ERI library. LibAccInt (Library for Accelerated Integral evalu-
ation) is a standalone integral library that is intended to interface
with any quantum chemistry code. However, special consideration
is given to the GAMESS FORTRAN code and the LibCChem C++
code. An interface to connect GAMESS and LibCChem with LibAc-
cInt is in progress, in order to enable optimized integral routines
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targeted for GPU execution, while also providing parallel CPU eval-
uation. The library will support several GPU programming models,
in order to execute on GPU architectures. The initial implementa-
tion of the library is based on the CUDA execution model. The initial
algorithm in planning for the library is the Head–Gordon–Pople331

(HGP) algorithm, an optimized version of the Obara–Saika307 algo-
rithm and an excellent approach for mid-contraction degrees. Addi-
tionally, the Obara–Saika algorithm, which outperforms the HGP
algorithms for certain contraction degrees and combinations of
angular momenta, is planned for implementation. Finally, early con-
traction schemes for the fast evaluation of highly contracted low-
angular-momentum ERIs, such as the Pople–Hehre309 axis switch
method and the CCTTT path in the PRISM algorithm,310 will also
be implemented. The integration of this GPU oriented library will
enable GAMESS and GAMESS + LibCChem to possess extremely
fast and efficient routines for integral calculations.

B. HF, GFB
The formation of the two-electron portion of the Fock matrix

in the Fock build step is the most computationally expensive proce-
dure in a Hartree–Fock (HF) implementation. The Fock build step
is composed of two main algorithmic stages: (i) the evaluation of the
ERIs and (ii) the contraction of the computed ERIs with the corre-
sponding density matrix elements, which are then added into the
Fock matrix. LibCChem offloads both stages to GPUs, effectively
minimizing the Fock build runtime.15

The goal for the new HF implementation was twofold: (1) to
create a high-performance HF code for medium-sized systems (i.e.,
on the order of ∼2000–3000 basis functions) and (2) to create a HF
code that minimizes, if not entirely eliminates, the need for required
synchronization between threads.

The new HF code uses a number of algorithmic design features
to achieve its two goals. The first design feature is its distribution of
tasks to different GPUs via a binned shell-pair container. The binned
shell pair container is a three-dimensional container that contains
batches of shell pairs such that all shell pairs in a batch are from the
same shell pair class. The shell pair container arranges these shell
pair batches in two ways—by shell pair class cost and by shell pair
value, where the shell pair value refers to the exponent of the largest
integral that can be calculated by the shell pair batch. The use of a
binned shell pair container achieves two goals. First, screening can
automatically be performed through a smart combination of shell
pair batches to create shell quartet batches. This is because the value
of the largest integral created by a shell quartet batch can be uniquely
mapped to the sum of the shell pair value of the two constituent
shell pair batches. Thus, screening can occur at the task distribution
stage rather than after task distribution, significantly improving load
balance. Additionally, all shell quartets within a shell quartet batch
will have exactly the same computational cost, leading to a perfectly
load-balanced computation of the ERIs arising from a shell quartet
batch.

The shell quartet batches are formed by combining a bra shell
pair batch with one or multiple ket shell pair batches, and subse-
quently distributed to different MPI ranks (i.e., GPUs) via a master-
slave model. The cost of each shell pair batch is calculated before-
hand, and the most expensive shell quartet batches are formed first
and distributed first, efficiently balancing the workload across the

active processes. Within a shell quartet batch, the different shell
quartets are distributed to different GPU threads so that the ERI
computation is performed for each shell quartet by a single thread.
As each shell quartet in a shell quartet batch will have the same
code path, this enables taking advantage of the SIMT hardware
architecture model that GPUs offer.

To minimize the required thread synchronization, a novel Fock
contraction has been devised and implemented. First, multiple por-
tions of the Fock matrix are stored and written to separately. The
first such portion is the J (Coulomb) matrix, which contains the two
Coulomb blocks used in the Fock contraction step. For a given shell
quartet batch, these are written completely in parallel without any
thread synchronization. The exchange (K) portions are written to
via the use of a series of three-dimensional exchange (K) arrays. For
a given shell quartet batch, there exists one K array per exchange
block, leading to four K arrays being written to overall. Each K
array is a three-dimensional object, where the first two dimensions
represent a location on the Fock matrix and the third dimension
represents a position within a buffer to be flushed to a given Fock
matrix element determined by the first two dimensions. During the
computation of the exchange elements in the Fock contraction step,
each exchange element is written to a unique location in one of the
four K arrays, eliminating the need for any thread synchronization.
After the K arrays are written to, they are flushed in parallel into
the Fock matrix. In this way, the new HF code achieves a minimal
amount of required thread synchronization, as both the Coulomb
and exchange elements can be added to the Fock matrix with no
thread synchronization whatsoever.

The benefits of such an approach can be seen in the speed-up
of the new LibCChem HF code compared to the default GAMESS
MPI-parallel HF code on Summit. Both codes were run on a 150-
water cluster using the PC0 segmented basis set. The LibCChem
code was run using a single V100 GPU. The CPU code was run in
parallel using 3, 6, 9, 12, 15, 18, and 21 threads on a single Sum-
mit Power9 CPU. This was done to compare the performance of
the new LibCChem code against a parallel run of the GAMESS HF
code and also to compare the performance of the new LibCChem
HF code against the predicted serial timing of the GAMESS HF
code, determined via extrapolation. Compared to the fully parallel
GAMESS HF code using 21 threads, that is, using the 21 cores of the
P9 processor at Simultaneous Multi-Threading (SMT) level 1, the
new LibCChem code achieved a speed-up of ∼39×. Against the pre-
dicted serial timing of the GAMESS HF code, the new LibCChem HF
algorithm achieved a speed-up of ∼755×. These significant speed-
ups display both the effectiveness of the current LibCChem HF
algorithm and the effectiveness of GPUs as a “number-crunching”
machine.

C. MP2
Along with ERI computations and RHF Fock build calcula-

tions, LibCChem can also perform MP2 energy calculations on
GPUs. The initial implementation of LibCChem MP2 was writ-
ten by Tomlinson et al.,304 initially devised for CPUs, and later
ported to GPUs. This implementation brought a number of mem-
ory footprint and performance improvements, when compared to
the original GAMESS implementation. First, chained matrix oper-
ations were reordered to minimize the FLOP count, and highly
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tuned math libraries were adopted for all of the integral transfor-
mations. Second, the per-core memory footprint was significantly
reduced, thereby enabling computations using several thousands of
basis functions. Third, the I/O bottleneck was alleviated by imple-
menting a strategy that uses OpenMP to assign threads to some
I/O duties, while other threads are performing compute operations.
The use of the HFD5 parallel file storage library was used to further
enhance I/O.

D. RI-MP2
The resolution of the identity (RI) approximation is a way

to ameliorate the cost of the evaluation of ERIs, as discussed in
Sec. III A. The RI approximation factorizes the four center two
electron integrals into the product of two and three center inte-
grals, which significantly reduces the cost. It can be applied to any
method that evaluates ERIs. The first implementation of the RI
methodologies in LibCChem was for the MP2 method. Two sets
of RI-MP2 methods are found within GAMESS + LibCChem: a
hybrid MPI/OpenMP CPU version (Fortran), which now supports
OpenMP GPU offloading,102 and a CUDA version in LibCChem
that supports NVIDIA GPUs.

The RI-MP2 implementations in GAMESS and LibCChem
focus the GPU intensive tasks in the dense matrix multiply opera-
tions needed for the MO and the V−1/2 transformation and to create
the four-center two-electron integrals from the three-center ones.
This is done via cuBLAS enabled matrix operations on GPUs. In
GAMESS, the final RI three center integrals can be stored in three
levels using (i) distributed memory, which can be expanded to a
desired size by adding more compute nodes; (ii) CPU compute node
memory, which is a fixed number and usually varies in the range of
∼250 GB to 512 GB for modern multicore CPUs; and (iii) GPU high
bandwidth global memory, which is as small as ∼16 GB. In the frag-
mentation context, the whole matrix can usually fit on CPU node
memory and/or the GPU global memory. For large calculations, the
matrix storage can be spilled to the distributed memory. Bench-
mark calculations for water clusters and fullerene showed that the
speed-up of the GPU RIMP2 energy kernel using a single V100 GPU
relative to the MPI/OpenMP RI-MP2 energy code using a P9 socket
(21 physical cores, 4 hardware threads) is 14× .102 This has demon-
strated that directive-based offloading implementations can perform
near the GPU/CPU theoretical speed-up based on the machine peak
ratios.

In LibCChem, the storage of the necessary quantities, such as
the integrals, is done in the AO basis. If the integrals to store are
small, the RI-MP2 algorithm will use the Global Arrays toolkit to
store them. However, if they are large the HDF5 parallel I/O library
is used. In benchmark calculations conducted on a 150-H2O cluster
using the aug-cc-pVDZ basis set, the LibCChem RI-MP2 algorithm
yielded a speed-up of ∼14× using a single V100 NVIDIA GPU com-
pared to the (LibCChem RI-MP2) CPU code run on a P9 socket
using 21 cores at SMT level 2 (increasing the SMT from 2 to 4, did
not yield any CPU performance improvement). The speed-up of a
calculation on the same molecular system using 66 V100 GPUs was
798×with respect to the fully parallel execution on the P9 CPU. This
showed that the RI-MP2 LibCChem implementation can reach near
the V100 peak throughput on a single GPU, maintaining also an
extremely high performance when operating on a large number of
GPUs.

E. Usability

Throughout its lifespan, LibCChem has seen significant
improvements to its usability as a library. The goal of such enhance-
ments was to meet the following design features: (i) the code must
be maintainable and readable, allowing for further development; (ii)
it should be modular, enabling users to build only selected function-
alities; (iii) it should always be compatible with modern versions of
its critical dependences; and (iv) it must be designed to be highly
portable.

General improvements in the usability of LibCChem came
in different forms. At its inception, LibCChem was built using a
patched version of GNU Autotools, the Boost library, and the Global
Arrays library, making it extremely complicated to build in any other
system than the one it was developed on. For this reason, the build
system was replaced with CMake, a modern, cross-platform, open
source tool for managing the building of packages. Transitioning to
a modern build system and not relying on a patched version of Auto-
tools enabled LibCChem to update to the most modern versions of
the Boost and Global Arrays libraries.

Another major improvement to LibCChem usability was
achieved by upgrading from the C++98 standard to C++11. Such
a modernization in the standard adopted by the library resulted in
fewer external dependences and in the capability to access modern
C++ constructs. This also lowered the reliance of LibCChem on the
Boost library, as many of its functionalities are directly provided
by the C++11 standard. LibCChem was also made more modular.
The library is capable of performing different types of calculations.
However, originally these different functionalities were not modu-
larized. All of the available methods were by default compiled and
linked to GAMESS. To streamline both the build and development
processes, the code has been split into four “modules”—the Hartree–
Fock module, the RI module (containing both RI-MP2 and density-
fitted Hartree–Fock), the CC module, and the MP2 module. These
modules can now be selected for compilation during the configu-
ration of GAMESS. During the LibCChem build process, the build
system recognizes, which modules the user would like to build and
builds only the files associated with those modules.

Along with build system improvements, LibCChem compiler
support was augmented. LibCChem now supports a wide variety of
compilers for compilation usage. Specifically, the library has been
tested and proven to work on the GCC (up to 9.1), Intel, PGI, XL,
and Clang compiler tool chains. Additionally, LibCChem has been
tested and shown to compile using GCC on ARM and IBM archi-
tectures. This increase in compiler support was facilitated primarily
via the removal of non-portable code from LibCChem such as the
“pedantic” warnings issued by the GCC compiler with the -pedantic
flag. This compiler flag issues warnings for any code that does not
strictly conform to the ISO C standard. Generally, this consists of
code that uses GCC-specific extensions and would thus not compile
on other compilers.

Started in the early 2010s, the LibCChem library has served
as the GPU arm of GAMESS. With GPUs becoming more and
more important in the world of high-performance computing, LibC-
Chem has become a more significant part of the GAMESS software
package. For this reason, LibCChem has seen many improvements
since its inception, ranging from algorithmic changes to upgrades in
usability by users of the library.
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Along with LibCChem, however, interest has also risen in
directly offloading GAMESS calculations to GPUs via the use of
OpenMP. GPU offloading via a pragma-based approach allows for
portability, as the standard could support multiple vendors within
it. At this point, the GPU offloading of GAMESS Fortran is limited
by compiler support. Future development of GAMESS in this area is
to come.

VI. SUMMARY AND FUTURE
GAMESS is a broad-based multi-function living electronic

structure code. Many of the future developments of GAMESS and
Libcchem have already been mentioned. These include the devel-
opment of fully analytic gradients for the QM–EFP2 method and
for the CCSD(T) and CR-CC(2,3) coupled cluster methods, and the
development of RI-CC methods and their integration with the FMO
and EFMO fragmentation methods. Fully analytic EFMO gradients
are almost, but not quite completed, and the derivation and cod-
ing of fully analytic gradients for the AFO version of FMO are in
progress. The development of highly parallel codes is planned for
all of the coupled cluster methods that have been implemented in
GAMESS and that will be implemented in LibCChem. The various
components in Libcchem, such as LibAccInt, the generalized Fock
build, and RI-MP2, will be more seamlessly integrated. In all of these
endeavors, improving the parallelism and overall computational
efficiency will be a central focus.

Gagliardi, Truhlar, and co-workers have developed the multi-
configurational pair density functional theory (MCP-DFT) that
introduces multi-configurational character into DFT. Their imple-
mentation will soon be released in GAMESS. Shortly thereafter, the
MCP-DFT analytic gradients will be added.

Work is underway on enriching the existing CC routines with
the double electron-attachment and double ionization potential
EOMCC options, which are particularly useful in determining the
electronic spectra of biradicals,154 and approximate coupled-pair
approaches, which extend traditional CC truncations to a strongly
correlated regime.
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