119 research outputs found
A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures
Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials
First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV
A direct measurement of the helicity dependence of the total photoabsorption
cross section on the proton was carried out at MAMI (Mainz) in the energy range
200 < E_gamma < 800 MeV. The experiment used a 4 detection system, a
circularly polarized tagged photon beam and a frozen spin target.
The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward
spin polarizability determined from the data are 226 \pm 5 (stat)\pm
12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for
200 < E_\gamma < 800 MeV.Comment: 6 pages, 3 figures, 3 table
The helicity amplitudes A and A for the D resonance obtained from the reaction}
The helicity dependence of the reaction
has been measured for the first time in the photon energy range from 550 to 790
MeV. The experiment, performed at the Mainz microtron MAMI, used a
4-detector system, a circularly polarized, tagged photon beam, and a
longitudinally polarized frozen-spin target. These data are predominantly
sensitive to the resonance and are used to determine its
parameters.Comment: 5 pages, 4 figure
In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper.
Using a combination of complementary in situ X-ray photoelectron spectroscopy and X-ray diffraction, we study the fundamental mechanisms underlying the chemical vapor deposition (CVD) of hexagonal boron nitride (h-BN) on polycrystalline Cu. The nucleation and growth of h-BN layers is found to occur isothermally, i.e., at constant elevated temperature, on the Cu surface during exposure to borazine. A Cu lattice expansion during borazine exposure and B precipitation from Cu upon cooling highlight that B is incorporated into the Cu bulk, i.e., that growth is not just surface-mediated. On this basis we suggest that B is taken up in the Cu catalyst while N is not (by relative amounts), indicating element-specific feeding mechanisms including the bulk of the catalyst. We further show that oxygen intercalation readily occurs under as-grown h-BN during ambient air exposure, as is common in further processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i.e., occurs at the catalyst/h-BN interface and depends on the level of oxygen fed to this interface. In turn, however, deliberate feeding of oxygen during h-BN deposition can positively affect control over film morphology. We discuss the implications of these observations in the context of corrosion protection and relate them to challenges in process integration and heterostructure CVD.P.R.K. acknowledges funding from the Cambridge Commonwealth Trust and the Lindemann
Trust Fellowship. R.S.W. acknowledges a research fellowship from St. John’s College,
Cambridge. S.H. acknowledges funding from ERC grant InsituNANO (no. 279342), EPSRC
under grant GRAPHTED (project reference EP/K016636/1), Grant EP/H047565/1 and EU FP7
Work Programme under grant GRAFOL (project reference 285275). The European Synchrotron
Radiation Facility (ESRF) is acknowledged for provision of synchrotron radiation and assistance
in using beamline BM20/ROBL. We acknowledge Helmholtz-Zentrum-Berlin Electron storage
ring BESSY II for synchrotron radiation at the ISISS beamline and continuous support of our
experiments.This is the final version. It was first published by ACS at http://pubs.acs.org/doi/abs/10.1021/cm502603
Helicity dependence of the γ→p→→nπ+π0 reaction in the second resonance region
The helicity dependence of the total cross section for the reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement was performed with the large acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, due to the intermediate production of the D13 resonance.
peerReviewe
Probing the Site-Dependent Kondo Response of Nanostructured Graphene with Organic Molecules
TCNQ molecules are used as a sensitive probe for the Kondo response of the electron gas of a nanostructured graphene grown on Ru(0001) presenting a moiré pattern. All adsorbed molecules acquired an extra electron by charge transfer from the substrate, but only those adsorbed in the FCC-Top areas of the moiré show magnetic moment and Kondo resonance in the STS spectra. DFT calculations trace back this behavior to the existence of a surface resonance in the low areas of the graphene moiré, whose density distribution strongly depends on the stacking sequence of the moiré area and effectively quenches the magnetic moment for HCP-Top sites. © 2014 American Chemical Society.Financial support by the Ministerio de Educación y Ciencia through Projects CONSOLIDER-INGENIO 2010 on Molecular Nanoscience, FIS2010-18847, FIS 2010-15127, FIS 2010-19609-C02-01, and CTQ2010-17006, and Comunidad de Madrid through the programme NANOBIOMAGNET S2009/MAT1726 is gratefully acknowledged.Peer Reviewe
Spectroscopic characterization of the on-surface induced (cyclo)dehydrogenation of a N-heteroaromatic compound on noble metal surfaces
New nanoarchitectures can be built from polycyclic aromatic hydrocarbons (PAHs) by exploiting the capability of some metal surfaces for inducing cyclodehydrogenation reactions. This bottom-up approach allows the formation of nanostructures with a different dimensionality from the same precursor as a consequence of the diffusion and coupling of the PAHs adsorbed on the surface. In this work we present a thorough study, by means of a combination of X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure and scanning tunneling microscopy with first principle calculations of the structural and chemical transformations undergone by pyridyl-substituted dibenzo[5]helicene on three coinage surfaces, namely Cu(110), Cu(111) and Au(111). Upon annealing, on-surface chemical reactions are promoted affecting the adsorbate/substrate and the molecule/molecule interactions. This thermally induced process favours the transformation from diffusing isolated molecules to polymeric nanographene chains and finally to N-doped graphene
Electronic properties of potassium doped FePc
The evolution of electronic structure of the organic semiconductor iron-phthalocyanine with potassium doping has been studied by means of photoemission spectroscopy, near-edge X-ray absorption fine structure and density functional theory (DFT) calculations. The DFT study and detailed analysis of the core-level spectra permit us to suggest possible lattice sites for the potassium ions. The data disclosed filling of the lowest unoccupied molecular orbital upon doping and associated changes of the core level absorption spectra. None of the films prepared in our studies showed a finite electronic density of states at the Fermi level. (C) 2010 Elsevier B.V. All rights reserved
- …