77 research outputs found
The physiological, in-vitro simulation of daily activities in the intervertebral disc using a load Informed kinematic evaluation (LIKE) protocol
This is the final version. Available on open access from Elsevier via the DOI in this record. Current spinal testing protocols generally adopt pure moments combined with axial compression. However, daily activities involve multi-axis loads, and multi-axis loading has been shown to impact intervertebral disc (IVD) cell viability. Therefore, integrating in-vivo load data with spine simulators is critical to understand how loading affects the IVD, but doing so is challenging due to load coupling and variable load rates. This study addresses these challenges through the Load Informed Kinematic Evaluation (LIKE) protocol, which was evaluated using the root mean squared error (RMSE) between desired and actual loads in each axis. Stage 1 involves obtaining the kinematics from six-axis load control tests replicating 20 Orthoload activities at a reduced test speed. Stage 2 applies these kinematics in five axes, with axial compression applied in load control, at the reduced speed and at the physiological test rate. Stage 3 enables long-term tests through six-axis kinematic control combined with diurnal height correction to account for the natural height fluctuations of the IVD. Stage 1 yielded RMSEs within twice the load cell noise floor. Low RMSEs were maintained during stage 2 at reduced speed (Tx:0.80 ± 0.30 N; Ty:0.77 ± 0.29 N; Tz:1.79 ± 0.50 N; Rx:0.02 ± 0.01Nm; Ry:0.02 ± 0.01Nm; and Rz:0.02 ± 0.01Nm) and at the physiological test rate (Tx:3.45 ± 1.81 N; Ty:3.82 ± 1.99 N; Tz:11.32 ± 8.69 N; Rx:0.13 ± 0.07Nm; Ry:0.16 ± 0.11Nm; and Rz:0.07 ± 0.04Nm). To address unwanted oscillations observed in longer tests (>2h), Stage 3 was introduced to enable the stable and consistent replication of activities at a physiological test rate. Despite higher RMSEs the axial error was 85.5 ± 24.27 N (equivalent to ∼ 0.16 MPa), with shear RMSEs similar to other testing systems conducting pure moment tests at slower rates. The LIKE protocol enables the replication of physiological loads, providing opportunities for enhanced investigations of IVD mechanobiology, and the pre-clinical evaluation of IVD devices and therapies.Engineering and Physical Sciences Research Council (EPSRC
Replicating spine loading during functional and daily activities: An in vivo, in silico, in vitro research pipeline
This is the final version. Available on open access from Elsevier via the DOI in this record. Lifestyle heavily influences intervertebral disc (IVD) loads, but measuring in vivo loads requires invasive methods, and the ability to apply these loads in vitro is limited. In vivo load data from instrumented vertebral body replacements is limited to patients that have had spinal fusion surgery, potentially resulting in different kinematics and loading patterns compared to a healthy population. Therefore, this study aimed to develop a pipeline for the non-invasive estimation of in vivo IVD loading, and the application of these loads in vitro. A full-body Opensim model was developed by adapting and combining two existing models. Kinetic data from healthy participants performing activities of daily living were used as inputs for simulations using static optimisation. After evaluating simulation results using in vivo data, the estimated six-axis physiological loads were applied to bovine tail specimens. The pipeline was then used to compare the kinematics resulting from the physiological load profiles (flexion, lateral bending, axial rotation) with a simplified pure moment protocol commonly used for in vitro studies. Comparing kinematics revealed that the in vitro physiological load protocol followed the same trends as the in silico and in vivo data. Furthermore, the physiological loads resulted in substantially different kinematics when compared to pure moment testing, particularly in flexion. Therefore, the use of the presented pipeline to estimate the complex loads of daily activities in different populations, and the application of those loads in vitro provides a novel capability to deepen our knowledge of spine biomechanics, IVD mechanobiology, and improve pre-clinical test methods.Engineering and Physical Sciences Research Council (EPSRC
Development of an integrated spine biomechanics framework combining in-vivo, in-silico and in-vitro methods
This is the author accepted manuscript.Engineering and Physical Sciences Research Council (EPSRC
You turn me cold: evidence for temperature contagion
Introduction
During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer.
Methods
Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand).
Results
Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy.
Conclusions
We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation
Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility
The methylenetetrahydrofolate reductase (MTHFR) gene is one of the main regulatory enzymes involved in folate metabolism, DNA synthesis and remethylation reactions. The influence of MTHFR variants on male infertility is not completely understood. The objective of this study was to analyze the distribution of the MTHFR C677T and A1298C variants using PCR-Restriction Fragment Length Polymorphism (RFLP) in a case group consisting of 344 men with unexplained reduced sperm counts compared to 617 ancestry-matched fertile or normozoospermic controls. The Chi square test was used to analyze the genotype distributions of MTHFR polymorphisms. Our data indicated a lack of association of the C677T variant with infertility. However, the homozygous (C/C) A1298C polymorphism of the MTHFR gene was present at a statistically high significance in severe oligozoospermia group compared with controls (OR = 3.372, 95% confidence interval CI = 1.27–8.238; p = 0.01431). The genotype distribution of the A1298C variants showed significant deviation from the expected Hardy-Weinberg equilibrium, suggesting that purifying selection may be acting on the 1298CC genotype. Further studies are necessary to determine the influence of the environment, especially the consumption of diet folate on sperm counts of men with different MTHFR variants
Seeing touches early in life
Addabbo M, Longhi E, Bolognini N, et al. Seeing touches early in life. PLoS ONE. 2015;10(9): e0134549
I Feel what You Feel if You Are Similar to Me
Social interactions are influenced by the perception of others as similar or dissimilar to the self. Such judgements could depend on physical and semantic characteristics, such as membership in an ethnic or political group. In the present study we tested whether social representations of the self and of others could affect the perception of touch. To this aim, we assessed tactile perception on the face when subjects observed a face being touched by fingers. In different conditions we manipulated the identity of the shown face. In a first experiment, Caucasian and Maghrebian participants viewed a face belonging either to their own or to a different ethnic group; in a second experiment, Liberal and Conservative politically active participants viewed faces of politicians belonging to their own or to the opposite political party. The results showed that viewing a touched face most strongly enhanced the perception of touch on the observer's face when the observed face belonged to his/her own ethnic or political group
Taking two to tango:fMRI analysis of improvised joint action with physical contact
<div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div
Copying you copying me:Interpersonal motor co-ordination influences automatic imitation
Moving in a co-ordinated fashion with another individual changes our behaviour towards them; we tend to like them more, find them more attractive, and are more willing to co-operate with them. It is generally assumed that this effect on behaviour results from alterations in representations of self and others. Specifically, through neurophysiological perception-action matching mechanisms, interpersonal motor co-ordination (IMC) is believed to forge a neural coupling between actor and observer, which serves to blur boundaries in conceptual self-other representations and causes positive views of the self to be projected onto others. An investigation into this potential neural mechanism is lacking, however. Moreover, the specific components of IMC that might influence this mechanism have not yet been specified. In the present study we exploited a robust behavioural phenomenon - automatic imitation - to assess the degree to which IMC influences neural action observation-execution matching mechanisms. This revealed that automatic imitation is reduced when the actions of another individual are perceived to be synchronised in time, but are spatially incongruent, with our own. We interpret our findings as evidence that IMC does indeed exert an effect on neural perception-action matching mechanisms, but this serves to promote better self-other distinction. Our findings demonstrate that further investigation is required to understand the complex relationship between neural perception-action coupling, conceptual self-other representations, and social behaviour
The effect of cigarette smoking, alcohol consumption and fruit and vegetable consumption on IVF outcomes: A review and presentation of original data
Background - Lifestyle factors including cigarette smoking, alcohol consumption and nutritional habits impact on health, wellness, and the risk of chronic diseases. In the areas of in-vitro fertilization (IVF) and pregnancy, lifestyle factors influence oocyte production, fertilization rates, pregnancy and pregnancy loss, while chronic, low-grade oxidative stress may underlie poor outcomes for some IVF cases. Methods - Here, we review the current literature and present some original, previously unpublished data, obtained from couples attending the PIVET Medical Centre in Western Australia. Results - During the study, 80 % of females and 70 % of male partners completed a 1-week diary documenting their smoking, alcohol and fruit and vegetable intake. The subsequent clinical outcomes of their IVF treatment such as quantity of oocytes collected, fertilization rates, pregnancy and pregnancy loss were submitted to multiple regression analysis, in order to investigate the relationship between patients, treatment and the recorded lifestyle factors. Of significance, it was found that male smoking caused an increased risk of pregnancy loss (p = 0.029), while female smoking caused an adverse effect on ovarian reserve. Both alcohol consumption (β = 0.074, p < 0.001) and fruit and vegetable consumption (β = 0.034, p < 0.001) had positive effects on fertilization. Conclusion - Based on our results and the current literature, there is an important impact of lifestyle factors on IVF clinical outcomes. Currently, there are conflicting results regarding other lifestyle factors such as nutritional habits and alcohol consumption, but it is apparent that chronic oxidative stress induced by lifestyle factors and poor nutritional habits associate with a lower rate of IVF success
- …