32 research outputs found

    Use of Clumped-Isotope Thermometry To Constrain the Crystallization Temperature of Diagenetic Calcite

    Get PDF
    We describe an approach to estimating the crystallization temperatures of diagenetic calcites using clumped-isotope thermometry, a paleothermometer based on the ^(13)C–^(18)O-bond enrichment in carbonates. Application of this thermometer to calcified gastropod shells and calcite cements in an early Eocene limestone from the Colorado Plateau reveals a record of calcite precipitation and replacement at temperatures varying from 14 to 123°C. The early Eocene host sediments were never deeply buried, but they experienced a significant thermal pulse associated with the emplacement of a late Miocene basalt flow. The combination of independent constraints on thermal history with clumped-isotope thermometry, petrographic (including cathodoluminescence) observations, and oxygen isotopic data provides an improved basis for estimation of the temperature and timing of diagenetic events and fluid sources. The petrography and calcite ή^(18)O values, taken alone, suggest that the aragonite-to-calcite transformation of gastropod shell material occurred simultaneously with early formation of cements and lithification of the matrix in the same sample. However, addition of clumped-isotope thermometry demonstrates that this phase transformation of shell material occurred at temperatures of 94–123°C in a highly rock-buffered microenvironment (i.e., with the isotopic composition of fluid buffered by coexisting carbonate), millions of years after lithification of the matrix and formation of initial low-temperature (14–19°C) calcite cements within shell body cavities. Clumped-isotope temperatures in excess of reasonable Earth-surface conditions recorded by later-formed cements demand that cement growth occurred in association with the lava emplacement. Our results illustrate the potential for clumped-isotope thermometry to constrain conditions of diagenesis and guide interpretations that would not be possible on the basis of conventional stable-isotopic and petrographic data alone, and demonstrate how petrographic characterization of clumped-isotope thermometry samples can benefit paleoclimate studies

    Rise of the Colorado Plateau: A Synthesis of Paleoelevation Constraints From the Region and a Path Forward Using Temperature-Based Elevation Proxies

    Get PDF
    The Colorado Plateau’s complex landscape has motivated over a century of debate, key to which is understanding the timing and processes of surface uplift of the greater Colorado Plateau region, and its interactions with erosion, drainage reorganization, and landscape evolution. Here, we evaluate what is known about the surface uplift history from prior paleoelevation estimates from the region by synthesizing and evaluating estimates 1) in context inferred from geologic, geomorphic, and thermochronologic constraints, and 2) in light of recent isotopic and paleobotanical proxy method advancements. Altogether, existing data and estimates suggest that half-modern surface elevations were attained by the end of the Laramide orogeny (∌40 Ma), and near-modern surface elevations by the mid-Miocene (∌16 Ma). However, our analysis of paleoelevation proxy methods highlights the need to improve proxy estimates from carbonate and floral archives including the ∌6–16 Ma Bidahochi and ∌34 Ma Florissant Formations and explore understudied (with respect to paleoelevation) Laramide basin deposits to fill knowledge gaps. We argue that there are opportunities to leverage recent advancements in temperature-based paleoaltimetry to refine the surface uplift history; for instance, via systematic comparison of clumped isotope and paleobotanical thermometry methods applied to lacustrine carbonates that span the region in both space and time, and by use of paleoclimate model mediated lapse rates in paleoelevation reconstruction

    Were springline carbonates in the Kurkur-Dungul area (Southern Egypt) deposited during glacial periods?

    Get PDF
    The tufa deposits in the Kurkur–Dungul area, southern Egypt, date from marine isotope stage (MIS) 11 to MIS 1. Springs across the region were active during glacial periods (with sea-level below –50 m), reflecting changed atmospheric circulation over the Indian Ocean, as well as peak interglacial periods. During times of low sea-level, reduced Indonesian throughflow promoted formation of an Indian Ocean Warm Pool, and anomalous rainfall on its western margin. We suggest that Egypt lies at the intersection of westerly (‘maghrebian’) and easterly (‘mashriqian’) rainfall provinces, which show different timing with relation to orbital forcing and different source water regions. Tufa-growth periods are therefore not mechanistically linked to ‘humid periods’ or ‘sapropel events’ identified elsewhere. Stable isotope and T(Δ47) data are also inconsistent with these spring systems being part of a larger system spanning northern Africa, and lack a clear interaction between northern hemisphere heating and mid-latitude rainfall. We also follow previous researchers in concluding that formation of springline deposit formation was probably delayed compared with rainfall, owing to aquifer flow distances. This delay is unlikely to be sufficient to explain why rainfall is out of phase with movements of the monsoon belts, but may complicate interpretation of these records. Supplementary material: A lithofacies description and supplementary figures and tables are available at https://doi.org/10.6084/m9.figshare.c.524666

    40Ar/39Ar ages from hornblende, biotite and muscovite collected from the Marsyangdi valley of central Nepal

    No full text
    This dataset contains 40Ar/39Ar bedrock ages measured from 20 hornblende, 9 biotite, and 40 muscovite grains collected from the Marsyangdi valley of central Nepal. The samples were all collected from medium to high-grade metamorphic rocks, to add to already available thermochronometric datasets in the region, and better constrain the exhumation history of the central Himalayas. Measurement of the hornblende and biotite ages were performed using a step-heating method. However, measurement of the muscovite ages was performed using either a step-heating, or a total fusion method

    Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    No full text
    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes
    corecore