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The Colorado Plateau’s complex landscape has motivated over a century of debate, key to
which is understanding the timing and processes of surface uplift of the greater Colorado
Plateau region, and its interactions with erosion, drainage reorganization, and landscape
evolution. Here, we evaluate what is known about the surface uplift history from prior
paleoelevation estimates from the region by synthesizing and evaluating estimates 1) in
context inferred from geologic, geomorphic, and thermochronologic constraints, and 2) in
light of recent isotopic and paleobotanical proxy method advancements. Altogether,
existing data and estimates suggest that half-modern surface elevations were attained
by the end of the Laramide orogeny (∼40Ma), and near-modern surface elevations by the
mid-Miocene (∼16Ma). However, our analysis of paleoelevation proxy methods highlights
the need to improve proxy estimates from carbonate and floral archives including the
∼6–16Ma Bidahochi and ∼34Ma Florissant Formations and explore understudied (with
respect to paleoelevation) Laramide basin deposits to fill knowledge gaps. We argue that
there are opportunities to leverage recent advancements in temperature-based
paleoaltimetry to refine the surface uplift history; for instance, via systematic
comparison of clumped isotope and paleobotanical thermometry methods applied to
lacustrine carbonates that span the region in both space and time, and by use of
paleoclimate model mediated lapse rates in paleoelevation reconstruction.

Keywords: Colorado Plateau, paleoaltimetry, clumped isotopes, paleobotany, temperature proxies, Southern Rocky
Mountains

INTRODUCTION

Scientists have long debated the uplift of the Colorado Plateau region (CP), including the modern
Colorado River (CR) drainage from the RockyMountains to where it exits themodern plateau southwest
of Grand Canyon (GC; Figure 1). This region was a tectonically stable sedimentary basin near sea-level
until the Laramide orogeny initiated in the Late Cretaceous (Hunt, 1956; Nations et al., 1991) and now
resides∼2–3 km above sea level. Proposedmechanisms for plateau risemake testable predictions of uplift
patterns due to processes including: lower-crustal flow (McQuarrie and Chase, 2000) or shear-removal of
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FIGURE 1 | (A)Modern elevation of the Colorado Plateau region with relevant geographic features and depositional basins, locations of paleoaltimetry estimates,
and transects corresponding to Figure 2. Symbols represent the paleoaltimetry method applied at each location, and superscripts refer to paleo-elevation estimate ID in
Supplementary Table S1. SJB � San Juan Basin; BcB � Baca Basin; BB � Bidahochi Basin; MM � Music Mountain Formation; CB � Claron Basin; FB � Flagstaff
Basin; UB � Uinta Basin; PB � Piceance Basin; CF � Creede Formation; AF � Antero Formation; FF � Florissant Formation; PP � Pitch-Pinnacle Formation; PF �
Platoro Formation. (B–D) Relevant paleogeographic reconstructions to provide context for interpreting uplift of the Colorado Plateau region (see Overview section for
discussion). (B) In the Late Cretaceous-Paleocene, evidence of the Laramide orogeny and uplift of the CP is marked by the disappearance of marine deposits (gray
shading with inferred paleo-shoreline contours based on deposit ages; BMB � Black Mesa Basin; DB � Denver Basin - Fox Hills Group). The Sevier thrust front
schematically shows the edge of the Sevier highlands and marks the western boundary of the CP. (C) By the Eocene, North-flowing paleocanyons had incised the
southwestern plateau (orange arrows; MH � Milkweed-Hindu, PS � Peach Springs). Uplift to the north and east caused internal drainage and drainage reorganization
(blue arrows). (D) In the Oligocene-Miocene, there was widespread volcanism (gray shading) on the edges of the CP. Continental extension and normal faulting to the
West and South (Basin and Range, Rio Grande Rift) caused a drop in base-level and aided drainage reversal to the southwest (blue arrows). Paleogeographic
reconstructions were adapted from these compilations: Hunt, 1956; Potochnik et al., 2001; Davis et al., 2009; Cather et al., 2012; Young and Crow, 2014; Hill et al.,
2016; Karlstrom et al., 2020.
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lithospheric mantle by the Farallon slab during the Laramide
(Hernández-Uribe and Palin, 2019); lithospheric foundering
(Bird, 1979) or hydration (Porter et al., 2017) in the mid-
Cenozoic; and mantle upwelling (e.g., Moucha et al., 2009) or
isostatic response to denudation (e.g., Lazear et al., 2013) in the
late Cenozoic. Accurate paleoelevation constraints can evaluate
hypothesized uplift mechanisms and provide context for CR
evolution.

Here, we build on previous syntheses (e.g., Cather et al., 2012)
to examine proposed CP paleoelevation estimates and highlight
opportunities to refine the elevation history in light of recent
proxy method advances. Decades of paleoelevation
reconstructions combined with constraints from geology,
geomorphology, and thermochronology support the
interpretation that the CP was elevated through multi-stage,
spatially differential uplift since the Laramide. Paleobotanical
and geochemical proxy methods and the use of climate
models to infer paleoelevation from proxy data have advanced
significantly in the past 10–15 years and can be leveraged to refine
and expand temperature-based paleoelevation reconstructions
across the CP region.

CONSTRAINTS ON COLORADO PLATEAU
PALEOTOPOGRAPHY

Numerous geologic, thermochronologic, and geomorphic
investigations constrain CP paleotopography, providing
context for evaluating paleoaltimetry estimates (for details, see
reviews by Hunt, 1956; Young and Spamer, 2001; Beard et al.,
2011; Cather et al., 2012; Karlstrom et al., 2014; Ranney, 2014;
Karlstrom et al., 2017; Crow et al., 2019; Karlstrom et al., 2019;
Leopold and Zaborac-Reed, 2019; Hill and Polyak, 2020;
Karlstrom et al., 2020).

Overview
CP pre-Cenozoic stratigraphy is characterized by relatively flat-lying
sedimentary sequences, which suggests that the region was a
comparatively stable sedimentary basin near or below sea-level
for most of the Paleozoic-Mesozoic (Hunt, 1956). Coincident
with onset of the Laramide (≥90Ma; Carrapa et al., 2019), CP
uplift likely swept from southwest to northeast (Figure 1B)
suggested by the diachronous disappearance of Cretaceous
Interior Seaway deposits (Nations et al., 1991; Raynolds and
Johnson, 2003); barbed NE-flowing tributaries along sections of
GC; and substantial (∼2 km) Paleozoic-Mesozoic to late Cretaceous-
Paleogene denudation on the southwestern plateau indicated by
erosional unconformities (e.g., Young, 2001; Hill et al., 2016).
Imbricated gravels deposited in incised paleo-canyons (e.g.,
Milkweed-Hindu, Peach Springs, Salt River) on the southwestern
CPmargin in the late Cretaceous and Paleocene-Eocene support this
view (e.g., Young, 2001; Potochnik et al., 2011), although the
magnitude of Paleogene relief is debated (e.g., Karlstrom et al.,
2014; Young and Crow, 2014).

The mid-Cenozoic (Figure 1C) was a period of internal
drainage from the Sevier highlands to the west (e.g., Davis
et al., 2009; Ibarra et al., 2021) and uplifts to the northeast

(e.g., Cather et al., 2012). Drainage reorganization and tilting
are evidenced by widespread fluvial and lacustrine deposits across
the CP (Hunt, 1956) and lacustrine carbonate oxygen isotopic
records (Davis et al., 2009). Late Cenozoic (Figure 1D)
continental extension caused subsidence on the western and
southern CP margins (McQuarrie and Wernicke, 2005).
Drainage reversed to the southwest (e.g., Potochnik et.al.,
2001), and a scarcity of late Cenozoic deposits suggests
regional erosion (Hunt, 1956).

The modern CR was integrated from its headwaters in the
Rocky Mountains through GC coincident with development of
the Salton Trough by ∼6 Ma, recorded by CR deposits in the
Muddy Creek Formation (e.g., Longwell, 1946; Lucchitta, 1972;
Karlstrom et al., 2014). The CR reached its current base-level in
the Gulf of California at 4.80–4.63 Ma (Crow et al., 2021).

Additional Uplift Constraints
Studies have investigated CP paleoelevation through
reconstructions of erosion and river incision, which may occur
in response to relief, drainage, and base-level changes that
accompany surface uplift. Erosional exhumation may drive
cooling of crustal rocks, which can be recorded by mineral
thermal histories reconstructed from thermochronology
(Reiners and Shuster, 2009), or constrained by other burial
and thermal history information (Nuccio and Condon, 1996).
For instance, thermochronometer cooling ages and peak burial
temperature constraints from the southwestern CP surface
suggests >1.5 km of denudation during the Laramide (e.g.,
Flowers et al., 2008), and ∼1.9–2.5 km of denudation prior to
the Neogene (Ryb et al., 2021), supporting the interpretation that
uplift of the southwestern CP margin initiated during the
Laramide and may have continued into the late Cenozoic.
Recent (<10 Ma) cooling of the southwestern CP surface rocks
may reflect an erosional response to integration of the CR and a
drop in base-level (e.g., Lee et al., 2013; Murray et al., 2016).

Cooling histories from canyon-rim and river-level samples
track paleo-relief of GC (Flowers et al., 2008; Flowers and Farley,
2012; Flowers and Farley, 2013; Lee et al., 2013; Karlstrom et al.,
2014; Winn et al., 2017) and constrain minimum plateau
paleoelevation. A synthesis of thermochronologic datasets by
Karlstrom et al. (2020) indicates segments of the GC were
incised at different times before becoming integrated 6–5 Ma;
the Western GC was likely a paleo-canyon with substantial relief
incised by a northeast-flowing river by ∼65 Ma, whereas the
Eastern GC was likely incised by a NW-flowing paleo-river by
∼20 Ma. These trends are compatible with multi-stage uplift prior
to ∼20 Ma. Additional erosion constraints from volcanic deposits
(e.g., Aslan et al., 2008; Donahue et al., 2013), cave deposits
(Karlstrom et al., 2008; Polyak et al., 2008), and strath terraces
show increased incision rates since ∼6 Ma, for example in eastern
GC (Crow et al., 2014) and the Lower Colorado River (Karlstrom
et al., 2017), potentially reflecting small-scale (<400 m) uplift of
the southwestern plateau related to Neogene volcanism (Crow
et al., 2011; Crow et al., 2019).

River longitudinal profiles may also constrain CP uplift timing
(Roberts et al., 2012). However, complications due to varying
rock erodibility (Cook et al., 2009; Pederson and Tressler, 2012),
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normal faulting and paleocanyon integration (Karlstrom et al.,
2014), as well as drainage reorganization and resulting changes to
stream power (Schwanghart and Scherler, 2020) limit
straightforward correlation between river profiles and uplift.
Nevertheless, an inverse correlation between channel steepness
and upper mantle p-wave velocity in the Virgin River drainage
suggests epeirogenic uplift affects modern CP river profiles (Walk
et al., 2019). Projection of relict channels buried by Miocene and
younger basalt (Hamblin et al., 1981), and knickpoint-bound
upper reaches in CR tributaries (Darling and Whipple, 2015),
indicate ∼1 km relief growth both prior to and since the Miocene.
Such constraints do not distinguish between relief growth in
response to CP uplift or subsidence at the plateau margin (Ott
et al., 2018).

PREVIOUS PALEOALTIMETRY

Many workers have developed and applied direct paleoelevation
proxies to resolve CP paleoelevation, though little agreement on

methods or results has been reached (Figure 2; Supplementary
Table S1). For instance, CP paleoelevation estimates based on
basalt-vesicle paleobarometry (Sahagian et al., 2002a; Sahagian
et al., 2002b; Sahagian et al., 2003), while elegant in theory, are
problematic (Bondre, 2003; Libarkin and Chase, 2003), and the
approach has not been replicated. Below, we evaluate CP
paleoelevation estimates from oxygen-isotopic and
paleothermometry-based methodologies.

δ18O-Based Paleoaltimetry
δ18O of precipitation decreases as air masses traverse increasing
elevation (e.g., Rowley and Garzione, 2007). δ18O of authigenic
carbonates (δ18Oc) precipitated frommeteoric waters can be used
to infer δ18O of precipitation and thus elevation, but several
factors must be considered (Botsyun and Ehlers, 2021). In
southwestern North America, summer and winter
precipitation originate from different sources and commonly
exhibit different δ18O values (Douglas et al., 1993; Blasch and
Bryson, 2007), and summer monsoon precipitation is impacted
by the “amount effect” (i.e., heavy precipitation is depleted in 18O

FIGURE 2 | Compilation of paleoelevation estimates for the Colorado Plateau region. Error bars shown where available and represent reported uncertainties or
range of possible elevations. Symbols correspond to proxy-type and color corresponds to age (consistent with Figure 1). For all panels, elevation profiles (black line)
correspond to transects in Figure 1. Swath profiles of these transects are shown by mean elevation (gray line), the first and third quartile relief (dark shading), and the full
maximum-minimum relief (light shading). (A) Compilation of all estimates projected onto elevation transect (A-A’); swath profile is cropped to the CP region and is
660 km across at its widest extent (330 km on either side of the transect). (B-D) Regional topographic swath profiles are 60 km wide (30 km on either side of the
transect). Estimates are labeled by name of their geologic unit consistent with Figure 1 (BcB � Baca Basin; BB � Bidahochi Basin; FB � Flagstaff Basin; PB � Piceance
Basin; CF � Creede Formation; AF � Antero Formation; FF � Florissant Formation; PP � Pitch-Pinnacle Formation; PF � Platoro Formation). (B) Estimates from the
northern plateau projected onto elevation transect B-B’. (C) Estimates from the present-day Rocky Mountains projected onto elevation transect (C-C’). (D) Estimates
from the southern plateau projected onto elevation transect (D-D’). All data and references are presented in Supplementary Table S1; data from MacGinitie, 1953;
Steven and Ratté, 1965; MacGinitie, 1969; Axelrod and Bailey, 1976; Meyer, 1986; Axelrod, 1987; Wolfe and Schorn, 1989; Gregory and Chase, 1992; Meyer, 1992;
Wolfe, 1992a; Wolfe, 1992b; Gregory, 1994; Wolfe, 1994; Gregory and McIntosh, 1996; Axelrod, 1998; Wolfe et al., 1998; Gregory-Wodziki, 2001; Leopold and
Claypoole 2001; Boyle et al., 2008; Leopold et al., 2008; Huntington et al., 2010; Cather et al., 2012; Baumgartner andMeyer, 2014; Leopold and Zaborac-Reed, 2014;
VanDevelde and Bowen, 2014; Zaborac-Reed and Leopold, 2016; Licht et al., 2017; Leopold and Zaborac-Reed, 2019; Allen et al., 2020.

Frontiers in Earth Science | www.frontiersin.org June 2021 | Volume 9 | Article 6486054

Heitmann et al. Rise of the Colorado Plateau

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


whereas sparse precipitation is enriched in 18O; Dansgaard,
1964). Changing atmospheric conditions can further
complicate precipitation δ18O through time (Licht et al., 2017).
Moreover, various factors can blur the δ18O-elevation
relationship preserved in δ18Oc, including temperature (e.g.,
Kim and O’Neil, 1997), evaporation (e.g., Licht et al., 2017),
seasonal-bias (e.g., Breecker et al., 2009), and/or drainage
reorganization (Davis et al., 2008).

Novel carbonate isotopic approaches have been developed to
circumvent some complexities of reconstructing water δ18O
values, for example by providing independent information on
temperature (e.g., clumped isotopes; Huntington et al., 2010) and
on unevaporated catchment water composition from triple-
oxygen isotopes (Passey and Ji, 2019) or 13C-excess (Horton
and Oze, 2012). Licht et al. (2017) and VanDeVelde and Bowen
(2014) used these methods to estimate ∼1.5 km paleoelevation for
the Baca Formation (∼38 Ma) and 1–1.5 km mean hypsometric
paleoelevation for the Flagstaff Formation (∼50 Ma), respectively
(Figure 2). Despite limitations, δ18Oc values from CP Eocene
north-western basins may record increased mean hypsometric
elevation (Figure 1A), lake closures resulting from local
topographic growth diverting flows, and southward
progression of drainage integration (Davis et al., 2009).

Paleobotanical Thermometry-Based
Paleoaltimetry
The steepest temperature gradients on Earth are vertical, making
surface temperature proxies attractive paleoaltimeters. Proxies
have been used to estimate depositional mean annual surface
temperature (paleo-MAST), which may be combined with coeval
near-sea-level temperature reference data and an estimated rate
of temperature decrease with elevation (“lapse-rate”) to infer
paleoelevation.

Paleobotanical methods are perhaps the oldest and most
widely used paleotemperature proxies (e.g., Bailey and Sinnott,
1915;Wolfe, 1979;Wolfe, 1994; Greenwood et al., 2004) and have
been applied throughout the Cenozoic of North America (e.g.,
Retallack et al., 2004; Wing et al., 2005; Peppe et al., 2010).
Bioclimatic proxies identify climate “envelopes” defined by the
physical tolerances of sampled plant assemblages or their nearest
living relatives (e.g., Mosbrugger and Utescher, 1997; Boyle et al.,
2008; Thompson et al., 2012). Leaf physiognomic proxies are
based on empirical correlations between temperature and
physical properties of modern leaves, applied quantitatively to
ancient floras using several different methods (e.g., Wolfe, 1993;
Wilf, 1997; Spicer et al., 2009; Peppe et al., 2011). Paleobotanical
proxies have been used widely and resulted in widely varying
temperature and elevation reconstructions—as well as debate
over when and where they are applicable in the geologic past
(e.g., Kowalski and Dilcher, 2003; Royer and Wilf, 2006; Little
et al., 2010; Peppe et al., 2010).

Studies of key Eocene-Oligocene sites (Figure 1) highlight this
variability and permit several CP uplift histories (Figure 2;
Supplementary Table S1 and references therein). MAST
estimates based on different methodologies applied to the
same fossil assemblage span a ∼13°C range for the Florissant

flora, and other key floral sites at Creede and Pitch-Pinnacle have
similarly wide ranges of temperature estimates (Leopold and
Zaborac-Reed, 2019). Existing paleoelevation reconstructions
based on paleobotanical-proxy temperatures and estimated
lapse-rates (either study-specific lapse-rates, or using Wolfe,
1992a; Meyer, 1986; Meyer, 1992; discussed in Challenges and
Recent Advances section) contain significant uncertainty—in
some cases estimates range from <0.5 to >4 km for the same
flora (e.g., Florissant; Figure 2C). Additional estimates calculated
here using the refined Meyer (2007) approach (i.e., sea-level
correction, local lapse-rate), based on paleobotanical-proxy
temperature estimates that lack published paleoelevation
evaluations, show similarly broad possibilities (Supplementary
Table S1). This highlights the need for an evaluation of
paleobotanical methods and their application, as well as the
independent verification of temperature estimates and
paleoelevation approaches.

Clumped Isotope Thermometry-Based
Paleoaltimetry
Carbonate clumped isotope (Δ47) thermometry (Ghosh et al.,
2006; Eiler, 2007; Eiler, 2011) is commonly used for
reconstructing surface temperature and paleoelevation
(Huntington and Lechler, 2015). The Δ47 value refers to the
ratio of “clumped” carbonate molecules containing heavy
isotopes 13C and 18O, relative to the random distribution of
isotopes among isotopologues. Heavy isotope clumping is
directly temperature-dependent, and the carbonate
temperature estimates (TΔ47) are thermodynamically based;
thus, the method can be applied in the geologic past without
concern for plant evolutionary changes or variable
paleobotanical-proxy methods, provided authigenic carbonates
are available and well preserved. Clumped isotope data also
constrain water δ18O values, and were used by Licht et al.
(2017) to assess diagenesis and complement δ18O-based CP
paleoaltimetry. TΔ47 for the Miocene lacustrine Bidahochi
Formation (16–6 Ma), combined with TΔ47 of coeval near-sea-
level deposits and a modern-lake-carbonate TΔ47 lapse-rate,
estimated a paleoelevation of ∼1.9 km, suggesting that near-
modern surface elevations of the southern CP were attained
by 16 Ma (Figure 2; Huntington et al., 2010), consistent with
thermochronology data (Karlstrom et al., 2017).

DISCUSSION

Existing Estimates and Remaining
Questions
Existing paleoelevation estimates are compatible with multi-
stage, spatially differential uplift (Figure 2). Laramide-age
deposits imply ≳1 km rise of the northwestern and
southeastern CP by ∼50 and ∼38 Ma, respectively, consistent
with paleo-canyon and paleo-relief studies. Geologic constraints
from mid-Cenozoic (∼38 Ma) deposits suggest half- to near-
modern elevations in the northeastern CP (Steven and Ratté,
1965; Cather et al., 2012), consistent with some paleobotanical-
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based estimates. Late-Cenozoic (∼16–6 Ma) deposits suggest
near-modern elevations in the southwestern CP. Altogether,
this suggests half-modern surface elevations by ∼38 Ma, and
near-modern surface elevations by ∼16–6 Ma. The timing
supports hypothesized Laramide and mid-Cenozoic uplift
mechanisms but does not preclude more recent modest
surface uplift or subsidence, or rock uplift that is balanced by
erosion (<6 Ma on the southern CP).

Except for some paleobotanical-based estimates in the
southern Rocky Mountains, for all regions and time periods
paleoaltimetry data suggest that elevations were likely lower
than or close to modern; this is consistent with geodynamic
models and other constraints (e.g., Cather et al., 2012) and
implies multi-stage uplift without a complex late-Cenozoic
uplift and subsidence (c.f., Wolfe, 1994). The following remain
to be resolved: the 1) amount and spatio-temporal pattern of
Laramide-related surface uplift; 2) rate and timing of southern
Rocky Mountains uplift, with implications for drainage reversal;
3) magnitude of possible ≲16 Ma CP elevation change; and 4)
cause of variation in paleobotanical paleoelevation estimates.

A Path Forward With Temperature-Based
Paleoaltimetry
Challenges and Recent Advances
Temperature-based paleoaltimetry methodologies are
challenging, but have advanced substantially in the last decade
and have potential to help address these remaining questions.
Multiple factors independent of elevation influence MAST,
including short- (e.g., El-Nino Southern Oscillation) and long-
term climate changes (e.g., Cenozoic cooling). Additionally,
climate variability on decadal to millennial time scales may be
integrated differently depending on the resolution of the proxy,
and seasonal bias may impact different proxy types and settings
(e.g., Burgener et al., 2016). MAST varies spatially due to local
vegetation cover, aspect, precipitation regime, or proximity to
water bodies/the ocean (e.g., Kelson et al., 2020), which can
change with secular or periodic changes in
climate—potentially complicating comparison of known near-
sea-level deposits with contemporaneous inland deposits of
unknown elevation. Workers have addressed such
complications in various ways; e.g., Huntington et al. (2010)
analyzed the Bouse Formation as a near-sea-level anchor in two
sub-basins, and opted to use estimates from the warmer sub-basin
farther from the coast instead of the marine-biased colder sub-
basin proximal to the coast. Feng and Poulsen (2016) used
paleoclimate simulations of Eocene North America to make
improved predictions of contemporaneous sea-level
temperatures for Cordilleran floral sites.

There have also been varied approaches to determining lapse-
rates, such as applying the average modern global (5.5°C/km),
regional (3°C/km; Wolfe, 1992b), or local (e.g., 5.9°C/km; Meyer,
1986) lapse rate for the CP (e.g., Meyer, 2007). Lapse-rate may
change with aridity/humidity and latitude (e.g., Neumann, 1955;
Li et al., 2015), leading to skepticism about whether modern or
global lapse-rates are applicable to ancient reconstructions.
Paleoclimate models have advanced significantly since initial

rates were proposed and demonstrate that significant error can
be generated by applying linear modern lapse-rates to ancient
climates and paleogeographies; model-mediated lapse-rates
should be a key component of future temperature-based
paleoaltimetry studies (e.g., Feng and Poulsen, 2016;
Farnsworth et al., 2021; Botsyun and Ehlers, 2021).

Confidence and accuracy in paleobotanical temperature
estimates also have improved significantly. Advances include
new standardizations in leaf physiognomic methods (e.g.,
Peppe et al., 2011), regional corrections and character re-
evaluations in multivariate methods (e.g., Spicer et al., 2021),
larger comparative datasets and refined statistical methods in
bioclimatic analyses (e.g., Chevalier, 2019), and improvements in
paleofloral identifications and taxonomy (e.g., Manchester, 2014).
Additionally, the number of available CP-region collections has
increased; local and regional stratigraphy refinements have
improved context and relationships between existing floras
(e.g., Prothero, 2008), allowing for subsampling and clear
division in collection units; and geochronology has refined
ages and durations of distinct floras (e.g., Lipman and
Bachmann, 2015), allowing for higher-resolution
reconstructions and more precise application of corrections/
lapse-rates.

Challenges of TΔ47 paleoaltimetry include: the need for up to
tens of milligrams of carbonate to achieve precise temperature
estimates, and relatively large elevation uncertainties (∼0.5 km;
Huntington and Lechler, 2015); time integration during
carbonate precipitation that can vary depending on climate
(e.g., Kelson et al., 2020); and potential for carbonate
temperature resetting by post-depositional diagenesis and
heating (e.g., Huntington et al., 2011). Despite this, confidence
and accuracy in Δ47 measurements have improved significantly in
the last decade—with capability for higher sample throughput,
more robust calibrations, new carbonate standards, and improved
instrument precision and data normalization (e.g., Bernasconi
et al., 2018; Petersen et al., 2019; Saenger et al., 2021). Evaluation
of carbonate diagenesis also has improved (e.g., Lacroix and
Niemi, 2019), and recent work indicates that the burial/
exhumation history can be reconstructed from reset TΔ47

values with implications for paleotopography (e.g., Ning et al.,
2019).

While transfer functions have been proposed to translate
carbonate TΔ47 to MAST by assuming the seasonal timing of
carbonate formation (Hren and Sheldon, 2012), using
modern-carbonate-based lapse-rates may capture similar
seasonal bias of ancient samples and reduce assumptions
(e.g., Li et al., 2021). Quaternary lacustrine carbonates from
southwest North America apparently record summer-biased
temperature instead of MAST (Huntington et al., 2010).
However, this bias may not hold for the paleo-record,
particularly under Cretaceous and early Paleogene
greenhouse climates. Novel isotopic approaches (triple-
oxygen isotopes, 13C-excess) can help correct for
evaporative effects and estimate the unevaporated δ18O of
catchment waters, which may aid in constraining paleo-
hydrology and provide context for estimating carbonate
temperature seasonality and lapse-rates.
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Future Opportunities
These advances can be leveraged to refine temperature-based
proxy reconstructions and expand their use in the CP region.
The region is well suited to temperature-based
paleoaltimetry because its paleo-latitude has changed little
for ∼80 Ma; the mid-latitude setting allows for a steeper and
better-constrained temperature-elevation gradient, thus
minimizing elevation uncertainty; and target deposits are
widespread in space and time and unlikely to have been
deeply buried and diagenetically altered.

Essential to resolving paleobotanical estimates is
independent comparison of carbonate TΔ47 and well-
studied floral records from the same lacustrine formations
(e.g., Florissant, Creede, Antero). Systematic comparison
could expand the applicability and comparability of
techniques across additional Laramide-age localities
(Figure 1A) that may contain either carbonates or fossil
floras (Claron, Flagstaff, Uinta, Piceance, and San Juan
Basins), and potentially provide context for interpreting
14–19°C early calcite cements from the ∼64 Ma
southwestern CP Music Mountain Formation (Huntington
et al., 2011). Additionally, there is opportunity to re-evaluate
late-Cenozoic Bidahochi and Bouse Formation
paleotemperatures (Huntington et al., 2010) with higher
temporal/spatial resolution. In all cases, we recommend
using paleoclimate model-mediated lapse-rates and sea-
level corrections to minimize uncertainty and align
methods for extrapolating temperature to elevation. Our
analysis suggests that temperature-based paleoaltimetry
methods are key to refining CP paleoelevation, with
implications for understanding uplift mechanisms and CR
drainage evolution.
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