37 research outputs found
Comparing Fragmentation Trees from Electron Impact Mass Spectra with Annotated Fragmentation Pathways
Electron impact ionization (EI) is the most common form of ionization for GC-MS analysis of small molecules. This ionization method results in a mass spectrum not necessarily containing the molecular ion peak. The fragmentation of small compounds during EI is well understood, but manual interpretation of mass spectra is tedious and time-consuming. Methods for automated analysis are highly sought, but currently limited to database searching and rule-based approaches. With the computation of hypothetical fragmentation trees from high mass GC-MS data the high-throughput interpretation of such spectra may become feasible. We compare these trees with annotated fragmentation pathways. We find that fragmentation trees explain the origin of the ions found in the mass spectra in accordance to the literature. No peak is annotated with an incorrect fragment formula and 78.7% of the fragmentation processes are correctly reconstructed
Novel methods for the analysis of small molecule fragmentation mass spectra
The identification of small molecules, such as metabolites, in a high throughput manner plays an important in many research areas. Mass spectrometry (MS) is one of the predominant analysis technologies and is much more sensitive than nuclear magnetic resonance spectroscopy. Fragmentation of the molecules is used to obtain information beyond its mass. Gas chromatography-MS is one of the oldest and most widespread techniques for the analysis of small molecules. Commonly, the molecule is fragmented using electron ionization (EI). Using this technique, the molecular ion peak is often barely visible in the mass spectrum or even absent. We present a method to calculate fragmentation trees from high mass accuracy EI spectra, which annotate the peaks in the mass spectrum with molecular formulas of fragments and explain relevant fragmentation pathways. Fragmentation trees enable the identification of the molecular ion and its molecular formula if the molecular ion is present in the spectrum. The method works even if the molecular ion is of very low abundance. MS experts confirm that the calculated trees correspond very well to known fragmentation mechanisms.Using pairwise local alignments of fragmentation trees, structural and chemical similarities to already-known molecules can be determined. In order to compare a fragmentation tree of an unknown metabolite to a huge database of fragmentation trees, fast algorithms for solving the tree alignment problem are required. Unfortunately the alignment of unordered trees, such as fragmentation trees, is NP-hard. We present three exact algorithms for the problem. Evaluation of our methods showed that thousands of alignments can be computed in a matter of minutes.
Both the computation and the comparison of fragmentation trees are rule-free approaches that require no chemical knowledge about the unknown molecule and thus will be very helpful in the automated analysis of metabolites that are not included in common libraries
Finding Characteristic Substructures for Metabolite Classes
We introduce a method for finding a characteristic substructure for a set of molecular structures. Different from common approaches, such as computing the maximum common subgraph, the resulting substructure does not have to be contained in its exact form in all input molecules. Our approach is part of the identification pipeline for unknown metabolites using fragmentation trees. Searching databases using fragmentation tree alignment results in hit lists containing compounds with large structural similarity to the unknown metabolite. The characteristic substructure of the molecules in the hit list may be a key structural element of the unknown compound and might be used as starting point for structure elucidation. We evaluate our method on different data sets and find that it retrieves essential substructures if the input lists are not too heterogeneous. We apply our method to predict structural elements for five unknown samples from Icelandic poppy
The Role of Non-Coding RNAs in the Human Placenta
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools
Fast alignment of fragmentation trees
Motivation: Mass spectrometry allows sensitive, automated and high-throughput analysis of small molecules such as metabolites. One major bottleneck in metabolomics is the identification of âunknownâ small molecules not in any database. Recently, fragmentation tree alignments have been introduced for the automated comparison of the fragmentation patterns of small molecules. Fragmentation pattern similarities are strongly correlated with the chemical similarity of the molecules, and allow us to cluster compounds based solely on their fragmentation patterns
Swiftly Computing Center Strings
Hufsky F, Kuchenbecker L, Jahn K, Stoye J, Böcker S. Swiftly Computing Center Strings. BMC Bioinformatics. 2011;12(1): 106
The International Virus Bioinformatics Meeting 2020.
The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting
Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causesthe infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformaticstools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection,understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to getinsight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for theroutine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemicand evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets anddevelopment of therapeutic strategies. For each tool, we briefly describe its use case and how it advances researchspecifically for SARS-CoV-2.Fil: Hufsky, Franziska. Friedrich Schiller University Jena; AlemaniaFil: Lamkiewicz, Kevin. Friedrich Schiller University Jena; AlemaniaFil: Almeida, Alexandre. the Wellcome Sanger Institute; Reino UnidoFil: Aouacheria, Abdel. Centre National de la Recherche Scientifique; FranciaFil: Arighi, Cecilia. Biocuration and Literature Access at PIR; Estados UnidosFil: Bateman, Alex. European Bioinformatics Institute. Head of Protein Sequence Resources; Reino UnidoFil: Baumbach, Jan. Universitat Technical Zu Munich; AlemaniaFil: Beerenwinkel, Niko. Universitat Technical Zu Munich; AlemaniaFil: Brandt, Christian. Jena University Hospital; AlemaniaFil: Cacciabue, Marco Polo Domingo. Instituto Nacional de TecnologĂa Agropecuaria. Centro de InvestigaciĂłn En Ciencias Veterinarias y AgronĂłmicas. Instituto de AgrobiotecnologĂa y BiologĂa Molecular. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de AgrobiotecnologĂa y BiologĂa Molecular; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Chuguransky, Sara RocĂo. European Bioinformatics Institute; Reino Unido. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Drechsel, Oliver. Robert Koch-Institute; AlemaniaFil: Finn, Robert D.. Biocurator for Pfam and InterPro databases; Reino UnidoFil: Fritz, Adrian. Helmholtz Centre for Infection Research; AlemaniaFil: Fuchs, Stephan. Robert Koch-Institute; AlemaniaFil: Hattab, Georges. University Marburg; AlemaniaFil: Hauschild, Anne Christin. University Marburg; AlemaniaFil: Heider, Dominik. University Marburg; AlemaniaFil: Hoffmann, Marie. Freie UniversitĂ€t Berlin; AlemaniaFil: Hölzer, Martin. Friedrich Schiller University Jena; AlemaniaFil: Hoops, Stefan. University of Virginia; Estados UnidosFil: Kaderali, Lars. University Medicine Greifswald; AlemaniaFil: Kalvari, Ioanna. European Bioinformatics Institute; Reino UnidoFil: von Kleist, Max. Robert Koch-Institute; AlemaniaFil: Kmiecinski, RenĂł. Robert Koch-Institute; AlemaniaFil: KĂŒhnert, Denise. Max Planck Institute for the Science of Human History; AlemaniaFil: Lasso, Gorka. Albert Einstein College of Medicine; Estados UnidosFil: Libin, Pieter. Hasselt University; BĂ©lgicaFil: List, Markus. Universitat Technical Zu Munich; AlemaniaFil: Löchel, Hannah F.. University Marburg; Alemani
The International Virus Bioinformatics Meeting 2023
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24–26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting
NFDI4Microbiota â national research data infrastructure for microbiota research
Microbes â bacteria, archaea, unicellular eukaryotes, and viruses â play an important role in human and environmental health. Growing awareness of this fact has led to a huge increase in microbiological research and applications in a variety of fields. Driven by technological advances that allow high-throughput molecular characterization of microbial species and communities, microbiological research now offers unparalleled opportunities to address current and emerging needs. As well as helping to address global health threats such as antimicrobial resistance and viral pandemics, it also has a key role to play in areas such as agriculture, waste management, water treatment, ecosystems remediation, and the diagnosis, treatment and prevention of various diseases. Reflecting this broad potential, billions of euros have been invested in microbiota research programs worldwide. Though run independently, many of these projects are closely related. However, Germany currently has no infrastructure to connect such projects or even compare their results. Thus, the potential synergy of data and expertise is being squandered. The goal of the NFDI4Microbiota consortium is to serve and connect this broad and heterogeneous research community by elevating the availability and quality of research results through dedicated training, and by facilitating the generation, management, interpretation, sharing, and reuse of microbial data. In doing so, we will also foster interdisciplinary interactions between researchers. NFDI4Microbiota will achieve this by creating a German microbial research network through training and community-building activities, and by creating a cloud-based system that will make the storage, integration and analysis of microbial data, especially omics data, consistent, reproducible, and accessible across all areas of life sciences. In addition to increasing the quality of microbial research in Germany, our training program will support widespread and proper usage of these services. Through this dual emphasis on education and services, NFDI4Microbiota will ensure that microbial research in Germany is synergistic and efficient, and thus excellent. By creating a central resource for German microbial research, NDFDI4Microbiota will establish a connecting hub for all NFDI consortia that work with microbiological data, including GHGA, NFDI4Biodiversity, NFDI4Agri and several others. NFDI4Microbiota will provide non-microbial specialists from these consortia with direct and easy access to the necessary expertise and infrastructure in microbial research in order to facilitate their daily work and enhance their research. The links forged through NFDI4Microbiota will not only increase the synergy between NFDI consortia, but also elevate the overall quality and relevance of microbial research in Germany