44 research outputs found

    Shape, spin and baryon fraction of clusters in the MareNostrum Universe

    Get PDF
    The MareNostrum Universe is one of the largest cosmological SPH simulation done so far. It consists of 102431024^3 dark and 102431024^3 gas particles in a box of 500 h1h^{-1} Mpc on a side. Here we study the shapes and spins of the dark matter and gas components of the 10,000 most massive objects extracted from the simulation as well as the gas fraction in those objects. We find that the shapes of objects tend to be prolate both in the dark matter and gas. There is a clear dependence of shape on halo mass, the more massive ones being less spherical than the less massive objects. The gas distribution is nevertheless much more spherical than the dark matter, although the triaxiality parameters of gas and dark matter differ only by a few percent and it increases with cluster mass. The spin parameters of gas and dark matter can be well fitted by a lognormal distribution function. On average, the spin of gas is 1.4 larger than the spin of dark matter. We find a similar behavior for the spins at higher redshifts, with a slightly decrease of the spin ratios to 1.16 at z=1.z=1. The cosmic normalized baryon fraction in the entire cluster sample ranges from Yb=0.94Y_b = 0.94, at z=1z=1 to Yb=0.92Y_b = 0.92 at z=0z=0. At both redshifts we find a slightly, but statistically significant decrease of YbY_b with cluster mass.Comment: 7 pages, 6 figures. Accepted for publication in The Astrophysical Journa

    The dynamical structure of dark matter haloes

    Full text link
    Thanks to the ever increasing computational power and the development of more sophisticated algorithms, numerical N-body simulations are now uncovering several phenomenological relations between the physical properties of dark matter haloes in position and velocity space. It is the aim of the present work to investigate in detail the dynamical structure of dark matter haloes, as well as its possible dependence on mass and its evolution with redshift up to z=5. We use high-resolution cosmological simulations of individual objects to compute the radially-averaged profiles of several quantities, scaled by the radius Rmax at which the circular velocity attains its maximum value, Vmax. No systematic dependence on mass or cosmic epoch are found within Rmax, and all the different radial profiles are well fit by simple analytical models. However, our results suggest that several properties are not `universal' outside this radius. [Abridged]Comment: Accepted for publication in MNRAS (10 pages, 8 figures

    Virialization of high redshift dark matter haloes

    Full text link
    We present results of a study of the virial state of high redshift dark matter haloes in an N-body simulation. We find that the majority of collapsed, bound haloes are not virialized at any redshift slice in our study (z=156z=15-6) and have excess kinetic energy. At these redshifts, merging is still rampant and the haloes cannot strictly be treated as isolated systems. To assess if this excess kinetic energy arises from the environment, we include the surface pressure term in the virial equation explicitly and relax the assumption that the density at the halo boundary is zero. Upon inclusion of the surface term, we find that the haloes are much closer to virialization, however, they still have some excess kinetic energy. We report trends of the virial ratio including the extra surface term with three key halo properties: spin, environment, and concentration. We find that haloes with closer neighbors depart more from virialization, and that haloes with larger spin parameters do as well. We conclude that except at the lowest masses (M < 10^6 \Msun), dark matter haloes at high redshift are not fully virialized. This finding has interesting implications for galaxy formation at these high redshifts, as the excess kinetic energy will impact the subsequent collapse of baryons and the formation of the first disks and/or baryonic structures.Comment: 5 pages, Accepted to MNRA

    The Evolution of the Dark Halo Spin Parameters lambda and lambda' in a LCDM Universe: The Role of Minor and Major Mergers

    Full text link
    The evolution of the spin parameter of dark halos and the dependence on the halo merging history in a set of dissipationless cosmological LCDM simulations is investigated. Special focus is placed on the differences of the two commonly used versions of the spin parameter, namely lambda=J*E^1/2/(G*M^5/2) (Peebles 80) and lambda'=J/(sqrt(2)*M_vir*R_vir*V_vir) (Bullock et al. 01). Though the distribution of the spin transfer rate defined as the ratio of the spin parameters after and prior to a merger is similar to a high degree for both, lambda and lambda', we find considerable differences in the time evolution: while lambda' is roughly independent of redshift, lambda turns out to increase significantly with decreasing redshift. This distinct behaviour arises from small differences in the spin transfer during accretion events. The evolution of the spin parameter is strongly coupled with the virial ratio eta:=2*E_kin/|E_pot| of dark halos. Major mergers disturb halos and increase both their virial ratio and spin parameter for 1-2 Gyrs. At high redshifts (z=2-3) many halos are disturbed with an average virial ratio of eta = 1.3 which approaches unity until z=0. We find that the redshift evolution of the spin parameters is dominated by the huge number of minor mergers rather than the rare major merger events.Comment: 10 pages, 11 figures, submitted to MNRA

    Resolving the Formation of Protogalaxies. II. Central Gravitational Collapse

    Get PDF
    Numerous cosmological hydrodynamic studies have addressed the formation of galaxies. Here we choose to study the first stages of galaxy formation, including non-equilibrium atomic primordial gas cooling, gravity and hydrodynamics. Using initial conditions appropriate for the concordance cosmological model of structure formation, we perform two adaptive mesh refinement simulations of ~10^8 M_sun galaxies at high redshift. The calculations resolve the Jeans length at all times with more than 16 cells and capture over 14 orders of magnitude in length scales. In both cases, the dense, 10^5 solar mass, one parsec central regions are found to contract rapidly and have turbulent Mach numbers up to 4. Despite the ever decreasing Jeans length of the isothermal gas, we only find one site of fragmentation during the collapse. However, rotational secular bar instabilities transport angular momentum outwards in the central parsec as the gas continues to collapse and lead to multiple nested unstable fragments with decreasing masses down to sub-Jupiter mass scales. Although these numerical experiments neglect star formation and feedback, they clearly highlight the physics of turbulence in gravitationally collapsing gas. The angular momentum segregation seen in our calculations plays an important role in theories that form supermassive black holes from gaseous collapse.Comment: Replaced with accepted version. To appear in ApJ v681 (July 1

    The virialized mass of dark matter haloes

    Full text link
    (Abridged) Virial mass is used as an estimator for the mass of a dark matter halo. However, the commonly used constant overdensity criterion does not reflect the dynamical structure of haloes. Here we analyze dark matter cosmological simulations in order to obtain properties of haloes of different masses focusing on the size of the region with zero mean radial velocity. Dark matter inside this region is stationary, and thus the mass of this region is a much better approximation for the virial mass. We call this mass the static mass to distinguish from the commonly used constant overdensity mass. We also study the relation of this static mass with the traditional virial mass, and we find that the matter inside galaxy-size haloes is underestimated by the virial mass by nearly a factor of two. At redshift zero the virial mass is close to the static mass for cluster-size haloes. The same pattern - large haloes having M_vir > M_static - exists at all redshifts, but the transition mass M_0 = M_vir = M_static decreases dramatically with increasing redshift. When rescaled to the same M_0 haloes clearly demonstrate a self-similar behaviour, which in a statistical sense gives a relation between the static and virial mass. To our surprise we find that the abundance of haloes with a given static mass, i.e. the static mass function, is very accurately fitted by the Press & Schechter approximation at z=0, but this approximation breaks at higher redshifts. Instead, the virial mass function is well fitted as usual by the Sheth & Tormen approximation. We find an explanation why the static radius can be 2-3 times larger as compared with the constant overdensity estimate. Applying the non-stationary Jeans equation we find that the role of the pressure gradients is significantly larger for small haloes.Comment: 14 pages, 16 figures, accepted for publication in MNRAS. v2: Evolution of static mass function and some other minor changes added to match the accepted versio

    Spin and structural halo properties at high redshift in a LCDM Universe

    Full text link
    In this paper, we examine in detail the key structural properties of high redshift dark matter haloes as a function of their spin parameter. We perform and analyze high resolution cosmological simulations of the formation of structure in a LCDM Universe. We study the mass function, ellipticities, shapes, density profiles, rotation curves and virialization for a large sample of dark matter haloes from z = 15 - 6. We also present detailed convergence tests for individual haloes. We find that high spin haloes have stronger clustering strengths (up to 25%) at all mass and redshift ranges at these early epochs. High redshift spherical haloes are also up to 50% more clustered than aspherical haloes. High spin haloes at these redshifts are also preferentially found in high density environments, and have more neighbors than their low spin counterparts. We report a systematic offset in the peak of the circular velocity curves for high and low spin haloes of the same mass. Therefore, estimating halo masses without knowledge of the spin, using only the circular velocity can yield errors of up to 40%. The strong dependence of key structural properties on spin that we report here likely have important implications for studies of star formation and feedback from these galaxies.Comment: 14 pages, 10 figures. Accepted to MNRAS

    Quantifying galactic morphological transformations in the cluster environment

    Full text link
    We study the effects of the cluster environment on galactic morphology by defining a dimensionless angular momentum parameter λd\lambda_{d}, to obtain a quantitative and objective measure of galaxy type. The use of this physical parameter allows us to take the study of morphological transformations in clusters beyond the measurements of merely qualitative parameters, e.g. S/E ratios, to a more physical footing. To this end, we employ an extensive Sloan Digital Sky Survey sample (Data Release 7), with galaxies associated with Abell galaxy clusters. The sample contains 121 relaxed Abell clusters and over 51,000 individual galaxies, which guarantees a thorough statistical coverage over a wide range of physical parameters. We find that the median λd\lambda_{d} value tends to decrease as we approach the cluster center, with different dependences according to the mass of the galaxies and the hosting cluster; low and intermediate mass galaxies showing a strong dependence, while massive galaxies seems to show, at all radii, low λd\lambda_{d} values. By analysing trends in λd\lambda_{d} as functions of the nearest neighbour environment, clustercentric radius and velocity dispersion of clusters, we can identify clearly the leading physical processes at work. We find that in massive clusters (σ>700\sigma>700 km/s), the interaction with the cluster central region dominates, whilst in smaller clusters galaxy-galaxy interactions are chiefly responsible for driving galactic morphological transformations.Comment: 10 pages, 6 figures. Accepted for publication in MNRA

    Internal properties and environments of dark matter halos

    Full text link
    We use seven high-resolution NN-body simulations to study the correlations among different halo properties (assembly time, spin, shape and substructure), and how these halo properties are correlated with the large-scale environment in which halos reside. The large-scale tidal field estimated from halos above a mass threshold is used as our primary quantity to characterize the large-scale environment, while other parameters, such as the local overdensity and the morphology of large-scale structure, are used for comparison. For halos at a fixed mass, all the halo properties depend significantly on environment, particularly the tidal field. The environmental dependence of halo assembly time is primarily driven by local tidal field. The mass of the unbound fraction in substructure is boosted in strong tidal force region, while the bound fraction is suppressed. Halos have a tendency to spin faster in stronger tidal field and the trend is stronger for more massive halos. The spin vectors show significant alignment with the intermediate axis of the tidal field, as expected from the tidal torque theory. Both the major and minor axes of halos are strongly aligned with the corresponding principal axes of the tidal field. In general, a halo that can accrete more material after the formation of its main halo on average is younger, is more elongated, spins faster, and contains a larger amount of substructure. Higher density environments not only provide more material for halo to accrete, but also are places of stronger tidal field that tends to suppress halo accretion. The environmental dependencies are the results of these two competing effects. The tidal field based on halos can be estimated from observation, and we discuss the implications of our results for the environmental dependence of galaxy properties.Comment: Accepted for publication in MNRA

    The hierarchical build-up of the Tully-Fisher relation

    Get PDF
    We use the semi-analytic model GalICS to predict the Tully-Fisher relation in the B, I and for the first time, in the K band, and its evolution with redshift, up to z~1. We refined the determination of the disk galaxies rotation velocity, with a dynamical recipe for the rotation curve, rather than a simple conversion from the total mass to maximum velocity. The new recipe takes into account the disk shape factor, and the angular momentum transfer occurring during secular evolution leading to the formation of bulges. This produces model rotation velocities that are lower by ~20-25% for the majority of the spirals. We implemented stellar population models with a complete treatment of the TP-AGB, which leads to a revision of the mass-to-light ratio in the near-IR. I/K band luminosities increase by ~0.3/0.5 mags at redshift z=0 and by ~0.5/1 mags at z=3. With these two new recipes in place, the comparison between the predicted Tully-Fisher relation with a series of datasets in the optical and near-IR, at redshifts between 0 and 1, is used as a diagnostics of the assembly and evolution of spiral galaxies in the model. At 0.4<z<1.2 the match between the new model and data is remarkably good, especially for later-type spirals (Sb/Sc). At z=0 the new model shows a net improvement in comparison with its original version of 2003, and in accord with recent observations in the K band, the model Tully-Fisher also shows a morphological differentiation. However, in all bands the z=0 model Tully-Fisher is too bright. We argue that this behaviour is caused by inadequate star formation histories in the model galaxies at low redshifts. The star-formation rate declines too slowly, due to continuous gas infall that is not efficiently suppressed. An analysis of the model disk scale lengths, at odds with observations, hints to some missing physics in the modeling of disk formation inside dark matter halos.Comment: Accepted for publication on MNRAS. 2 new plots, 1 new section, and extended discussion. 21 pages, 11 figures in tota
    corecore