78 research outputs found

    Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease

    Get PDF
    The accumulation of amyloid-β in the brain is an essential feature of Alzheimer's disease. However, the impact of amyloid-β-accumulation on neuronal dysfunction on the single cell level in vivo is poorly understood. Here we investigate the progression of amyloid-β load in relation to neuronal dysfunction in the visual system of the APP23×PS45 mouse model of Alzheimer's disease. Using in vivo two-photon calcium imaging in the visual cortex, we demonstrate that a progressive deterioration of neuronal tuning for the orientation of visual stimuli occurs in parallel with the age-dependent increase of the amyloid-β load. Importantly, we find this deterioration only in neurons that are hyperactive during spontaneous activity. This impairment of visual cortical circuit function also correlates with pronounced deficits in visual-pattern discrimination. Together, our results identify distinct stages of decline in sensory cortical performance in vivo as a function of the increased amyloid-β-load

    Alzheimer disease models and human neuropathology: similarities and differences

    Get PDF
    Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Aβ peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Aβ peptide, similar but not identical to the Aβ peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Aβ, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Aβ 42 levels, except for the Arctic mutation, which alters the Aβ sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Aβ deposition in most mouse lines. Doubly (APP × mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Aβ. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Aβ in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Aβ oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau −/− background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Aβ or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis

    Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis

    Get PDF
    Background: Epidemiological and experimental evidence has linked chronic inflammation to cancer aetiology. It is unclear whether associations for specific inflammatory biomarkers are causal or due to bias. In order to examine whether altered genetically predicted concentration of circulating cytokines are associated with cancer development, we performed a two-sample Mendelian randomisation (MR) analysis.Methods: Up to 31,112 individuals of European descent were included in genome-wide association study (GWAS) meta-analyses of 47 circulating cytokines. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines, located in or close to their coding gene (cis), were used as instrumental variables. Inverse-variance weighted MR was used as the primary analysis, and the MR assumptions were evaluated in sensitivity and colocalization analyses and a false discovery rate (FDR) correction for multiple comparisons was applied. Corresponding germline GWAS summary data for five cancer outcomes (breast, endometrial, lung, ovarian, and prostate), and their subtypes were selected from the largest cancer-specific GWASs available (cases ranging from 12,906 for endometrial to 133,384 for breast cancer).Results: There was evidence of inverse associations of macrophage migration inhibitory factor with breast cancer (OR per SD = 0.88, 95% CI 0.83 to 0.94), interleukin-1 receptor antagonist with endometrial cancer (0.86, 0.80 to 0.93), interleukin-18 with lung cancer (0.87, 0.81 to 0.93), and beta-chemokine-RANTES with ovarian cancer (0.70, 0.57 to 0.85) and positive associations of monokine induced by gamma interferon with endometrial cancer (3.73, 1.86 to 7.47) and cutaneous T-cell attracting chemokine with lung cancer (1.51, 1.22 to 1.87). These associations were similar in sensitivity analyses and supported in colocalization analyses.Conclusions: Our study adds to current knowledge on the role of specific inflammatory biomarker pathways in cancer aetiology. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for cancer prevention.</p

    Vitamin D and cognitive function: A Mendelian randomisation study

    Get PDF
    The causal nature of the association between hypovitaminosis D and poor cognitive function in mid-to later-life is uncertain. Using a Mendelian randomisation(MR) approach, we examined the causal relationship between 25(OH)D and cognitive function. Data came from 172,349 participants from 17 cohorts. DHCR7(rs12785878), CYP2R1 rs12794714) and their combined synthesis score were chosen to proxy 25(OH)D. Cognitive tests were standardised into global and memory scores. Analyses were stratified by 25(OH)D tertiles, sex and age. Random effects meta-analyses assessed associations between 25(OH)D and cognitive function. Associations of serum 25(OH)D with global and memoryrelated cognitive function were non-linear (lower cognitive scores for both low and high 25(OH)D, p(curvature) <= 0.006), with much of the curvature attributed to a single study. DHCR7, CYP2R1, and the synthesis score were associated with small reductions in 25(OH)D per vitamin D-decreasing allele. However, coefficients for associations with global or memory-related cognitive function were nonsignificant and in opposing directions for DHCR7 and CYP2R1, with no overall association observed for the synthesis score. Coefficients for the synthesis score and global and memory cognition were similar when stratified by 25(OH)D tertiles, sex and age. We found no evidence for serum 25(OH)D concentration as a causal factor for cognitive performance in mid-to later life

    The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis

    Get PDF
    Peer reviewe

    Inflammatory mediators in intra-abdominal sepsis or injury – a scoping review

    Full text link
    corecore