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The causal nature of the association between hypovitaminosis D and poor cognitive function in mid- to 
later-life is uncertain. Using a Mendelian randomisation(MR) approach, we examined the causal 
relationship between 25(OH)D and cognitive function. Data came from 172,349 participants from 17 
cohorts. DHCR7(rs12785878), CYP2R1 rs12794714) and their combined synthesis score were chosen 
to proxy 25(OH)D. Cognitive tests were standardised into global and memory scores. Analyses were 
stratified by 25(OH)D tertiles, sex and age. Random effects meta-analyses assessed associations 
between 25(OH)D and cognitive function. Associations of serum 25(OH)D with global and memory-
related cognitive function were non-linear (lower cognitive scores for both low and high 25(OH)D, 
pcurvature ≤ 0.006), with much of the curvature attributed to a single study. DHCR7, CYP2R1, and the 
synthesis score were associated with small reductions in 25(OH)D per vitamin D-decreasing allele. 
However, coefficients for associations with global or memory-related cognitive function were non-
significant and in opposing directions for DHCR7 and CYP2R1, with no overall association observed 
for the synthesis score. Coefficients for the synthesis score and global and memory cognition were 
similar when stratified by 25(OH)D tertiles, sex and age. We found no evidence for serum 25(OH)D 
concentration as a causal factor for cognitive performance in mid- to later life.

The profound effect of an ageing population is evidenced by estimates suggesting 65·7 million people worldwide will 
be affected by dementia by 2030, increasing to 115·4 million by 20501. The latency period from the onset of symp-
toms to clinical diagnosis is typically very long and cognitive changes can be observed decades before diagnosis2.  
So, for the development of efficient primary prevention strategies, it is essential to identify risk factors that operate  
at the early pre-clinical stage.

Hypovitaminosis D is hypothesised to be one such risk factor. Low 25-hydroxyvitamin D [25(OH)D] levels are 
prevalent in older individuals3, and adults with cognitive difficulties have been shown to have hypovitaminosis D4–6.  
There is a biologically plausible link between vitamin D and cognitive function. The vitamin D receptor (VDR), 
vitamin D metabolites and enzymes required for vitamin D activation have been found in the brain and central 
nervous system7. Additionally, experimental studies have demonstrated that active vitamin D may influence brain 
and neuron development8, and have neuroprotective potential and antioxidant effects7. Studies on VDR knockout 
mice have demonstrated that hypovitaminosis D may play a role in accelerated ageing, behavioural, social, motor 
and sensory deficits9–12, all of which can contribute to cognitive decline.

A number of observational studies have linked hypovitaminosis D with cognitive impairment and/or dementia5,6,13,14.  
In 2012, a meta-analysis including eight cross-sectional studies (n = 2,740) found that mean scores on the 
Mini-Mental State Examination (MMSE) were lower among individuals with <50 nmol/l compared with 
≥50 nmol/l 25(OH)D5. The authors also demonstrated that 25(OH)D concentrations were on average 6·2 nmol/l 
lower in Alzheimer’s disease patients compared with controls (n = 502)5. Another meta-analysis in 2012, includ-
ing five cross-sectional and two longitudinal studies (n = 7,688) suggested that the risk of cognitive impairment 
was doubled in participants with low vitamin D status compared to those with normal levels6. A systematic 
review in 2013 found that low vitamin D status was associated with worse cognitive function or a higher inci-
dence of dementia in 72% of the 25 cross-sectional studies and 67% of the six prospective studies included13. In 
2017, a meta-analysis including five longitudinal studies supported the hypothesis that 25(OH)D concentrations 
<25 nmol/l may contribute to the development of dementia14.

Results from randomised controlled trials (RCTs) have not been as promising15–18. However, null findings from 
these trials may be due to a number of reasons including: short follow-up time16,18, inclusion of younger participants16,  
inclusion of supraphysiological doses18, vitamin D being used in combination with other substances15,17,  
in low doses17 or, high baseline 25(OH)D status15,16.

In light of these findings, in 2014 a group of international experts came to the consensus that hypovitaminosis 
D should be considered a risk factor for cognitive decline and dementia as it may change the clinical presenta-
tion of dementia due to accompanying comorbidities, but that 25(OH)D should not be used as a diagnostic 
or prognostic biomarker19. The authors concluded that vitamin D supplementation should be part of the care 
management of older adults with cognitive disorders19. However, whether vitamin D plays a causal role in cogni-
tive decline directly or through its impact on comorbidities, or whether it is a consequence of cognitive decline 
remains unclear.

Determining the nature of the true relationship between vitamin D and cognitive function is challenging due 
to study design issues. For instance, even if well-conducted, observational studies may not capture all unmeasured 
confounding and there is a possibility of reverse causality20. RCTs are the gold standard approach for inferring a 
causal association, but they also have their limitations20. Mendelian Randomisation (MR) is an approach that uses 
a genetic variant, which is associated with the exposure of interest, to estimate the causal relationship between an 
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exposure and outcome20. This method can help to overcome some limitations of observational studies as it relies 
on the random assignment of genetic variants from parents to offspring to reduce the possibility of confounding20.  
Furthermore, since the genetic variant is established at conception, the possibility of reverse causality is minimised20.  
If hypovitaminosis D is causally related to worse cognitive function, the genetic variant associated with vitamin 
D status, should be associated with cognitive function. Using an MR approach, a recent study provided some 
support for a beneficial role of 25(OH)D in reducing the risk of dementia21.

We conducted a study to examine the causal nature of the association between vitamin D status, as measured 
by 25(OH)D, and cognitive function in mid- to later-life using a MR approach.

Methods
Participants.  Information came from 17 cohorts: 1958 British birth cohort (1958BC); Austria Stroke 
Prevention Study (ASPS); The CoLaus Study (CoLaus); English Longitudinal Study of Ageing (ELSA); 
Epidemiologic study assessing prevention, early detection, and treatment of chronic diseases among older adults 
(ESTHER); Helsinki Birth Cohort Study (HBCS); Health and Retirement Study (HRS); Northern Finland Birth 
Cohort 1966 (NFBC1966); The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS); Swedish 
Twin Registry (STR); The Tromsø Study (Tromsø); TwinGene; UK Biobank; The UK Household Longitudinal 
Study (Understanding Society, UKHLS); Uppsala Longitudinal Study of Adult Men (ULSAM); Whitehall II (WII); 
and Young Finns Study (YFS). In all studies, data were restricted to White/European participants with genetic 
and cognitive data (n = 172,349, Table 1). Information on 25(OH)D concentrations was available in nine studies 
(n = 26,856). All participants provided informed consent and ethical approval was granted by local research eth-
ics committees. An expanded description is provided in supplementary text.

Genetic variants.  We used two single nucleotide polymorphisms (SNPs) based on their demonstrated asso-
ciations with 25(OH)D concentrations: rs12785878 (vitamin D-decreasing allele, G), located near gene coding 
7-dehydrocholesterol reductase (DHCR7), and rs12794714 (vitamin D-decreasing allele, A) near 25-hydroxylase 
(CYP2R1)22,23. When these SNPs were not accessible, proxy SNPs in perfect linkage disequilibrium were used 
(Supplementary Table 1). The assumptions for the use of these SNPs to proxy vitamin D status in MR studies have 
been assessed in a previous study using data from 1958BC24. Data on DHCR7 and CYP2R1 were available in all 
cohorts. For analysis purposes, both DHCR7 and CYP2R1 genotypes were coded as 0-2 depending on presence 
of alleles associated with decreasing 25(OH)D concentrations, where homozygous genotypes were coded as 2. A 
score was created by summing DHCR7 and CYP2R1 on the basis of their effect alleles24. The score is referred to as 

Total Males Age, yrs Age ≥ 65yrs
25(OH)D, 
nmol/l

CYP2R1, 
MAF DHCR7, MAF

N = 172,349 (%) (median, IQR) (%) (median, IQR) (%) (%)

Studies with 25(OH)D (N = 28,070)

1958BC 5,633 49·1 50 (NA) 0 57·0 (33·9) 43·0 22·2

CoLaus 875 45·1 70 (6) 100 47·3 (33·6) 47·1 27·9

ESTHER 8,080 43·0* 74 (4)* 100* 45·1 (27·1) 46·2 25·7

HBCS 1,059 59·1 67·6 (3·6) 91·8 61 (24) 38·5 38·0

NFBC66 3,488 43·5 46·5 (0·9) 0 50·2 (20·8) 40·8 38·9

PIVUS 891 50·3 70·1 (0·2) 100 56 (26·5) 39·9 35·0

Tromsø 4,766 55·4 69 (11) 76·8 56·5 (25·9) 41·2 38·6

ULSAM 1,118 100 71 (0·9) 100 68·2 (24·7) 39·4 33·4

YFS 2,160 45·1 43 (9) 0 57 (25) 38·2 40·4

Studies without 25(OH)D (N = 144,279)

ASPS 780 43·3 64.7 (11) 49·2 NA 43·7 29·3

ELSA 5,382 45·6 65 (15) 50·6 NA 43·2 22·4

HRS 9,930 41·4 68 (15) 62 NA 43·8 27·0

STR 969 44·7 72.1 (10·1) 77·2 NA 38·8 30·0

TwinGene 2,362 51·1 69 (6) 100 NA 40·0 33·2

UKBiobank 111,936 47·5 58 (12) 19·7 NA 42·2 21·0

UKHLS 8,577 43·7 54 (24) 28·0 NA 42·4 21·6

WII 4,343 76·2 59·7 (10) 28·7 NA 42·5 22·7

Table 1.  Participant characteristics. IQR: Interquartile range; MAF: minor allele frequency. 1958BC: 1958 
British birth cohort; COLAUS: The Colaus study; ESTHER: Epidemiologische Studie zu Chancen der 
Verhütung, Früherkennung und optimierten Therapie chronischer Erkrankungen in der älteren Bevölkerung; 
HBCS: Helsinki Birth Cohort Study; NFBC66: Northern Finland birth cohort 1966; PIVUS: The Prospective 
Investigation of the Vasculature in Uppsala Seniors; TROMSO: The Tromsø Study; ULSAM: Uppsala 
Longitudinal Study of Adult Men; YFS: Young Finns; ASPS: Austria Stroke Prevention Study; ELSA: English 
Longitudinal Study of Ageing; HRS: Health and Retirement Study; STR: Swedish Twin Registry; TwinGene: 
Swedish Twin Registry; UKBiobank: UK Biobank; UKHLS: The UK Household Longitudinal Study 
(Understanding Society); WII: Whitehall II * N’s based on participants with cognitive data.
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the synthesis score since it contains the SNPs involved in the synthesis of 25(OH)D24. The few participants with 3 
or 4 25(OH)D-decreasing alleles (ranging from 9·6% in 1958BC to 17·4% in Tromsø) were grouped. Genotyping 
techniques are described in supplementary materials. Quality checks of each SNP including minor allele fre-
quencies and Hardy Weinberg equilibrium are reported in Supplementary Table 1. Minor allele frequencies were 
compared with HapMap data and were found to be approximately similar.

25-Hydroxyvitamin D.  25(OH)D concentrations were available for nine studies, with details for measure-
ment methods provided in the supplementary text. In order to examine analyses stratified by 25(OH)D concen-
trations, sex and study specific 25(OH)D tertiles(T) were created (Supplementary Table 2). 25(OH)D was found 
to be skewed, therefore natural log (ln) transformation was applied to approximate a normal distribution when 
25(OH)D was the outcome in analyses.

Global and memory cognitive function.  Details of cognitive tests in each cohort, grouped to represent 
global and/or memory cognitive function, can be found in supplementary materials. Each test was standardised 
to produce a mean of zero and a standard deviation of one. To obtain a summary score for global/memory cogni-
tive function, relevant tests were summed and re-standardised. ULSAM and CoLaus had information on global 
cognitive function only.

Covariates.  Results in all studies were adjusted for sex, age (in years), month of blood collection for 25(OH)
D, and, education and depressive symptoms which were considered potential confounders a priori. A description 
of how education and depressive symptoms were measured in each cohort is outlined in supplementary materials.

Statistical analyses.  Within each study, linear regression models were used to assess the following: 1) 
phenotypic associations i.e. serum 25(OH)D and cognitive function adjusted for age, sex, month of 25(OH)
D blood collection, educational attainment and depressive symptoms where possible; 2) associations between 
SNPs/synthesis score and cognitive function adjusted for age, sex, education, depressive symptoms and principle 
components (to account for population stratification) where specified in supplementary materials. The presence 
of non-linear phenotypic associations were assessed by including a quadratic term of 25(OH)D in the regression 
model. Interaction by age and sex was also assessed.

Results from within-study analyses were combined using random effects meta-analyses. Analyses were strati-
fied by 25(OH)D-tertiles, sex and age (<65 years vs. ≥65 years). I-square tests were used to indicate heterogeneity 
between cohorts.

Meta-regression was used to examine heterogeneity between the cohorts using results from the meta-analysed 
phenotypic analyses. Study characteristics that were hypothesised a priori to affect the association included sex, 
age (<65 years vs. ≥65 years), vitamin D assay (mass spectrometry or immunoassay) and country region [cate-
gorised as UK, Nordic (Finland, Sweden, Norway), central Europe (Austria, Germany, Switzerland) and the US].

To examine the strength and suitability of the SNPs/synthesis score as instruments for MR studies, associa-
tions between the SNPs/synthesis score and ln25(OH)D (adjusted for age, sex, month of 25(OH)D collection and 
study-specific components where specified) were examined, and F-statistics were calculated. The F-statistic was 
approximated from the proportion of variation in the model (R2) assessing 25(OH)D which is explained by the 
SNPs/synthesis score [F-stat = (R2*(n − 2))/(1 − R2)]. The adjusted R2 in each cohort was weighted by the sample 
size of each cohort. The F-statistic should ideally be greater than ten in order for an instrument to be considered 
strong enough to use25.

Participants from UK Biobank were used to investigate cognitive domain-specific effects (using standardised 
fluid intelligence, pairs matching and reaction time tests) of the SNPs/synthesis score.

Finally, a power calculation was conducted to determine the smallest effect size that our study able to detect at 
a two-sided alpha level of 0·05 and at a power of 0.80. Power analysis was performed using Quanto 1.2 (University 
of Southern California, USA).

Meta-analyses were conducted at the Centre for Population Health Research (University of South Australia) 
using STATA version 14.

Results
A total of 172,349 participants had complete data for the SNPs and completed at least one cognitive test. 
Participants from eight cohorts had no information on 25(OH)D concentrations, while two studies had no infor-
mation on memory-related cognitive function. Basic characteristics of all studies are presented in Table 1.

Phenotypic association between serum 25(OH)D and cognitive function.  In meta-analyses of the 
nine eligible studies, there was no evidence of interaction by sex or age on phenotypic associations (p ≥ 0·06, 
Supplementary Table 3). There was evidence of a non-linear relationship between serum 25(OH)D and cognitive 
function, p ≤ 0·006 (Supplementary Table 3) after adjustment for age, sex, month of blood collection, educational 
attainment and depressive symptoms. However, this non-linear association was driven by a single study and 
weakened following its’ exclusion from the meta-analyses (Table 2). When stratified by 25(OH)D tertiles, partic-
ipants in T2 and T3 had higher scores in global cognition compared with those in T1 (0·05 SD, 95%CI 0·01, 0·09; 
p = 0·02 and 0·07 SD, −0·01, −0·15; p = 0·07, respectively), while no clear differences were not seen for memory 
cognition (P ≥ 0·11 for both comparisons). There were no overall differences in phenotypic associations by sex, 
country or vitamin D assay, while associations appeared somewhat stronger among those aged 65 years or above 
compared to younger participants (Supplementary Table 4).
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Mendelian randomisation: association between SNPs/synthesis score and cognitive function.  
There were no associations between 25(OH)D-related SNPs/synthesis score with global or memory cognition 
(Fig. 1, Supplementary Table 5). Furthermore, there was no evidence for an association between SNPs/synthesis 
score with either cognitive measure stratifying by sex, age and 25(OH)D tertiles (Supplementary Figure 1). 
Genetic associations with cognitive function did not vary by age, sex or country (Supplementary Table 4).

Information for pairs matching (n = 110,545), reaction time (n = 109,911), reasoning (n = 35,603), and pro-
spective memory (n = 36,311) was available for the UK Biobank. We conducted domain specific analyses against 
all the four outcomes, but observed no associations with the SNPs/synthesis score (Supplementary Figure 2).

Instrument validation: association between SNPs/synthesis score and 25(OH)D.  The 
SNPs/synthesis score were associated with 25(OH)D (Fig. 2, Supplementary Table 6). 25(OH)D concentrations 
were 2·7% (95% CI 0·7% to 4·1%), 3·3% (95% CI 0·5% to 4·3%), and 3·1% (95% CI 0·5% to 4·0%) lower per 

Global Cognition Memory Cognition

N Beta (95% C.I.) p I2(%) phetero n Beta (95% C.I.) p I2(%) phetero

25(OH)D T1 4,961 Reference 44,482 Reference

25(OH)D T2 5,269 0·05 (0·01, 0·09) 0·02 17·48 0·29 44,772 0·04 (−0·01, 0·09) 00·11 34·29 0·17

25(OH)D T3 5,293 0·07 (−0·01, 0·15) 0·07 74·05 <0·001 44,827 0·02 (−0·07, 0·11) 0·64 76·84 <0·001

ptrend = 0·15 ptrend = 0·89

p*
curvature = 0·001 p┼curvature = 0·01

Table 2.  Association of sex-specific 25(OH)D tertiles with cognition. *excluding 1958BC, pcurvature = 0·04; 
┼excluding 1958BC, pcurvature = 0·16.

Figure 1.  Association of CYP2R1, DHCR7 and synthesis score with global and memory cognition.

Figure 2.  Association of CYP2R1, DHCR7 and synthesis score with 25-hydroxyvitamin D (25(OH)D).
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vitamin D-decreasing allele for DHCR7, CYP2R1 and the synthesis score respectively. The weighted F-statistic was 
54·13 (R2 = 0.003), 71·69 (R2 = 0.004) and 113·50 (R2 = 0.006) for DHCR7, CYP2R1 and the synthesis score respec-
tively. Since these F-statistics are >10, the SNPs/synthesis score can be considered strong proxies for 25(OH)D in 
MR analyses25.

Power calculation.  With a sample size of 153,187, a power of 0·80, and a two-sided alpha level of 0·05, we are 
sufficiently powered to detect a 0·0125 SD change in the cognitive score per vitamin D-decreasing allele. For the 
smallest stratum with n = 4,957, our study is powered to detect an effect size of 0·058 SD or larger (Supplementary 
Table 7). Converted to the reflect the association between serum 25(OH)D and a standardised cognitive outcome, 
this corresponds to a 0.09 SD and 0.51 SD difference by 1 SD change in log 25(OH)D for the full and minimum 
sample, respectively.

Discussion
Using data from 17 studies with information for up to 172,349 participants, we failed to find any evidence for a 
causal association between vitamin D and cognitive function, with sub-group analyses stratifying by age, sex and 
25(OH)D tertiles providing a consistent lack of evidence for causality. These findings suggest that the non-linear 
phenotypic association between serum 25(OH)D and cognitive function (where cognitive scores were lower for 
both low and high 25(OH)D concentrations), which was also confirmed in our datasets, may be due to reverse 
causation or confounding.

There are a limited number of RCTs assessing the effect of vitamin D supplementation on cognitive function15–18.  
In line with our study, these have provided little evidence for causality. In particular, our MR findings were sup-
portive of results from the biggest RCT to date which was carried out among older women (≥65 years, n = 4,143) 
participating in the Women’s Health Initiative15. In that RCT, over a mean follow-up of 7·8 years, there was no 
effect of supplementation with 400 IU/day vitamin D3 and 1,000 mg/day calcium on cognitive impairment. 
However, it has been argued that the inclusion of calcium, which can be harmful for the brain, may have weak-
ened the result, and baseline concentrations of 25(OH)D among participants may have been adequate to meet 
their cognitive requirements26. Two pre-post studies have been conducted27,28. One found no effect of four weeks 
of vitamin D2 supplementation on cognitive function among institutionalised older adults27. In contrast with 
our findings, the other study demonstrated an improvement in the cognitive performance among 20 older adults 
after 16 months of 800 IU/day vitamin D3 supplementation compared with controls (n = 24)28. However, the 
non-random pre-post design of these studies is a limitation as potential unmeasured confounding cannot be 
ruled out.

One earlier genetic study suggested a beneficial effect of 25(OH)D on reducing the risk of Alzheimer’s disease21.  
However, in this study the beneficial association with Alzheimer’s disease was due to a significant association 
with a variant in the GC gene coding variations in the vitamin D binding protein, while in line with our study, 
no associations were seen for DHCR7, or CYP2R1. As we have described earlier, while associated with 25(OH)
D concentrations, GC is not suitable for the use as its’ proxy marker in Mendelian randomisation analyses, given 
likely influences on bioavailability of 25(OH)D29. Indeed, the success of an MR study relies upon the ability 
of the genetic variant to accurately proxy the exposure of interest20. In line with previous studies22–24 we used 
two variants which have been consistently associated with circulating 25(OH)D concentrations. Both variants 
are located upstream of the 25(OH)D metabolite, with DHCR7 influencing substrate availability and CYP2R1 
coding the 25-OH-hydroxylate. Analyses stratifying by 25(OH)D concentrations suggested that the association 
between CYP2R1 and 25(OH)D is restricted to participants with the highest group. While this could suggest 
that the CYP2R1 variant has a rate-limiting effect on 25(OH)D synthesis for individuals with the high 25(OH)
D concentrations, it is also possible that the apparent difference is due to the wide range of 25(OH)D concentra-
tions for individuals in the highest tertile in this study. Stratification by 25(OH)D tertiles could also have led to 
collider bias, i.e. when the association of two variables (i.e. genetic variant and cognitive function), changes upon 
conditioning on a third variable (i.e. 25(OH)D), when this third variable is affected by the other two. Therefore, 
cautious interpretation is required when stratifying MR analyses by 25(OH)D.

Interpreting the association between vitamin D and cognitive function is complicated. Dementia is often 
accompanied by a range of other chronic diseases/disorders, where cognitive decline may enhance chronic dis-
ease and vice-versa19. Vitamin D supplementation has been shown to reduce mortality risk30. Hypovitaminosis D 
has been associated with a number of conditions including osteoporosis, vascular disease and reduced olfactory 
function31, which can precipitate the progression of dementia. Therefore it is plausible that the potential cognitive 
benefits of vitamin D identified in observational studies may be mediated by improvements in accompanying 
chronic diseases.

Results should be interpreted with limitations in mind. It has been suggested that there are sensitive periods i.e. 
foetal development, growth and senescence during which vitamin D is of particular significance to neurocognition19.  
Our study looked at effects on cognitive function in mid- to later-life, and while we found no evidence stratifying 
by age group (i.e. <65 versus ≥65 years), we could not assess the association in younger or very old individuals. 
Nevertheless, the use of genetic variants to proxy 25(OH)D status assumes that we have represented lifetime 
25(OH)D status20. Generalisability of the study results is restricted to caucasian populations. Cognition was 
assessed using different tests between the cohorts therefore a composite measure of global cognitive function was 
used to obtain a more uniform representation of cognitive function; this may have masked some domain specific 
effects. Since our previous study emphasised the role of vitamin D in cognitive function, a separate memory 
function score was created to account for any discriminating effects of vitamin D32. A recent study suggested that 
vitamin D may be associated with speed of processing and executive functioning33, we found no evidence for 
domain-specific effects using data from UK Biobank. MR studies require large sample sizes partly due to the very 
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small amount of variation in the exposure explained by genetic instruments20. According to the power calcula-
tion, our study was sufficiently powered to detect relatively small effects. Nevertheless, it should be acknowledged 
that our analyses may have been underpowered to detect small causal effects operating at the extremes of 25(OH)
D distribution.

Conclusion
We found no evidence for a causal association between 25(OH)D concentrations and cognitive performance in 
mid- to later-life.
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