431 research outputs found

    The Noble Mission

    Get PDF
    Saving the diversity of life on Eart

    On the independence ratio of distance graphs

    Full text link
    A distance graph is an undirected graph on the integers where two integers are adjacent if their difference is in a prescribed distance set. The independence ratio of a distance graph GG is the maximum density of an independent set in GG. Lih, Liu, and Zhu [Star extremal circulant graphs, SIAM J. Discrete Math. 12 (1999) 491--499] showed that the independence ratio is equal to the inverse of the fractional chromatic number, thus relating the concept to the well studied question of finding the chromatic number of distance graphs. We prove that the independence ratio of a distance graph is achieved by a periodic set, and we present a framework for discharging arguments to demonstrate upper bounds on the independence ratio. With these tools, we determine the exact independence ratio for several infinite families of distance sets of size three, determine asymptotic values for others, and present several conjectures.Comment: 39 pages, 12 figures, 6 table

    Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves

    Get PDF
    In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr--Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O--S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend stongly on the structure of the turbulence spectrun at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel

    Supermassive black hole mass in the massive elliptical galaxy M87 from integral-field stellar dynamics using OASIS and MUSE with adaptive optics: assessing systematic uncertainties

    Full text link
    The massive elliptical galaxy M87 has been the subject of several supermassive black hole mass measurements from stellar dynamics, gas dynamics, and recently the black hole shadow by the Event Horizon Telescope (EHT). This uniquely positions M87 as a benchmark for alternative black hole mass determination methods. Here we use stellar kinematics extracted from integral-field spectroscopy observations with Adaptive Optics (AO) using MUSE and OASIS. We exploit our high-resolution integral field spectroscopy to spectrally decompose the central AGN from the stars. We derive an accurate inner stellar-density profile and find it is flatter than previously assumed. We also use the spectrally-extracted AGN as a reference to accurately determine the observed MUSE and OASIS AO PSF. We then perform Jeans Anisotropic Modelling (JAM), with a new flexible spatially-variable anisotropy, and measure the anisotropy profile, stellar mass-to-light variations, inner dark matter fraction, and black hole mass. Our preferred black hole mass is MBH=(8.7±1.2)×109 M⊙M_{\rm BH}=(8.7\pm1.2) \times 10^9 \ M_\odot . However, using the inner stellar density from previous studies, we find a preferred black hole mass of MBH=(5.5−0.3+0.5)×109 M⊙M_{\rm BH} = (5.5^{+0.5}_{-0.3}) \times 10^9 \ M_\odot , consistent with previous work. We conduct numerous systematic tests of the kinematics and model assumptions and conclude that uncertainties in the black hole mass of M87 from previous determinations may have been underestimated and further analyses are needed.Comment: 19 pages, 16 figures, 4 tables, Submitted to MNRA

    Robustness of "cut and splice" genetic algorithms in the structural optimization of atomic clusters

    Get PDF
    We return to the geometry optimization problem of Lennard-Jones clusters to analyze the performance dependence of "cut and splice" genetic algorithms (GAs) on the employed population size. We generally find that admixing twinning mutation moves leads to an improved robustness of the algorithm efficiency with respect to this a priori unknown technical parameter. The resulting very stable performance of the corresponding mutation+mating GA implementation over a wide range of population sizes is an important feature when addressing unknown systems with computationally involved first-principles based GA sampling.Comment: 5 pages including 3 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    TB163: Insect Predation of Seeds and Plant Population Dynamics

    Get PDF
    This review provides a framework for understanding the mechanisms of insect seed predation, the diversity of insects that prey on seeds, and the ecological and evolutionary consequences of insect seed predation. Insect seed predation can play significant roles in reducing plant population growth, modifying intraspecific and interspecific competition, shifting spatial and temporal distribution, affecting species evolution, and plant community structure, both in natural and agricultural ecosystems.https://digitalcommons.library.umaine.edu/aes_techbulletin/1039/thumbnail.jp

    Spin Transport in a Mott Insulator of Ultracold Fermions

    Full text link
    Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven by super-exchange and doublon-hole-assisted tunneling, and strongly violates the quantum limit of charge diffusion. The technique developed in this work can be extended to finite doping, which can shed light on the complex interplay between spin and charge in the Hubbard model.Comment: 16 pages, 10 figure

    Role of the (Mn)superoxide dismutase of Enterococcus faecalis in the in vitro interaction with microglia

    Get PDF
    Enterococcus faecalis is a significant human pathogen worldwide and is responsible for severenosocomial and community-acquired infections. Although enterococcal meningitis is rare,mortality is considerable, reaching 21 %. Nevertheless, the pathogenetic mechanisms of thisinfection remain poorly understood, even though the ability of E. faecalis to avoid or survivephagocytic attack in vivo may be very important during the infection process. We previouslyshowed that the manganese-cofactored superoxide dismutase (MnSOD) SodA of E. faecalis wasimplicated in oxidative stress responses and, interestingly, in the survival within mouse peritonealmacrophages using an in vivo\u2013in vitro infection model. In the present study, we investigated therole of MnSOD in the interaction of E. faecalis with microglia, the brain-resident macrophages. Byusing an in vitro infection model, murine microglial cells were challenged in parallel with the wildtypestrain JH2-2 and its isogenic sodA deletion mutant. While both strains were phagocytosedby microglia efficiently and to a similar extent, the DsodA mutant was found to be significantlymore susceptible to microglial killing than JH2-2, as assessed by the antimicrobial protectionassay. In addition, a significantly higher percentage of acidic DsodA-containing phagosomes wasfound and these also underwent enhanced maturation as determined by the expression ofendolysosomal markers. In conclusion, these results show that the MnSOD of E. faecaliscontributes to survival of the bacterium in microglial cells by influencing their antimicrobial activity,and this could even be important for intracellular killing in neutrophils and thus for E. faecalispathogenesis
    • …
    corecore