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Robustness of “cut and splice” genetic algorithms
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We return to the geometry optimization problem of Lennard-Jones clusters to analyze the perfor-
mance dependence of “cut and splice” genetic algorithms (GAs) on the employed population size.
We generally find that admixing twinning mutation moves leads to an improved robustness of the
algorithm efficiency with respect to this a priori unknown technical parameter. The resulting very
stable performance of the corresponding mutation+mating GA implementation over a wide range
of population sizes is an important feature when addressing unknown systems with computationally
involved first-principles based GA sampling.

INTRODUCTION

Small clusters of less than a hundred atoms are an
increasingly studied class of materials exhibiting unique
optical, magnetic and chemical properties [1]. Due to
the intricate relationship between the geometric and elec-
tronic structure of clusters in this size range a reliable
determination of the ground-state and energetically low-
lying metastable geometric structures is a prerequisite.
Two crucial aspects of the corresponding global geome-
try optimization problem are the reliable sampling of the
high-dimensional potential-energy surface (PES) to iden-
tify the low-lying minima, and the accuracy with which
this PES is provided [2]. When aiming at a quantitative,
material-specific theory the high computational cost to
evaluate the PES with first-principles electronic struc-
ture methods adds another practical aspect, namely that
the sampling strategies be as efficient as possible. High
efficiency is in this respect often solely equated with a
minimum number of PES evaluations required until the
relevant structures are found. This neglects that sophis-
ticated sampling algorithms are usually based on a man-
ifold of technical parameters which sensitively determine
this efficiency and which can mostly only be optimized
through either a detailed knowledge of the PES topog-
raphy or repeated sampling runs with different settings.
Again, for numerically undemanding model PES the lat-
ter is not an issue, but instead done routinely. However,
for costly first-principles sampling of unknown systems,
where every single energy and force evaluation may take
say several hours of CPU time, this is clearly not possi-
ble and it thus becomes equally important that the ef-
ficiency is robust, namely that the algorithm exhibits a
similar performance as long as the chosen parameter set-
tings are in a reasonable range.

THEORY

With this motivation we return to an algorithm that
is widely used for geometry optimization problems, the
genetic algorithm (GA) [3, 4], and analyze its robust-
ness with respect to a central technical parameter, the
population size. In the context of structure optimization
GAs explore the PES landscape through a sequence of
trial structures that each time correspond to local PES
minima. Such trial structures are generated by randomly
modifying a given cluster structure in a so-called move
and an ensuing local geometry optimization. The central
idea of GAs is thereby to run several such trial struc-
ture sequences in parallel, exploiting this population to
also create new trial structures by mating the different
current configurations and thereby potentially combining
information from disparate parts of the high-dimensional
PES. Replacing old members of the population with
newly obtained more stable candidates, the generation
update procedure is repeated until the global optimized
and other low-lying structures are found. A plethora of
subtle modifications of this basic principle has been sug-
gested, including parameter settings and move types tai-
lored for specific applications (e.g. [4, 5, 6, 7, 8, 9]). With
the goal of a robust general-purpose methodology with a
minimum number of technical parameters we only return
to these ramifications below, and focus instead here on
a classic move type originally suggested by Deaven and
Ho [5, 6]. Such “cut and splice” moves are generically
applicable and by their very construction enable huge
jumps in configuration space, thus promising a decent
sampling. As the name suggests, a new trial structure is
generated by suitably cutting an existing cluster geom-
etry into two halves along an arbitrarily oriented plane
and then splicing two halves together. This can either
be done by recombining the two halves of the same clus-
ter after rotation by a random angle, thus making it a
so-called twinning mutation [7], or by recombining the
halves of different configurations in the current popula-
tion, thereby creating a mating or crossover operation.
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While such mating moves appear most natural within
the GA philosophy of mixing “genetic” information in
the population, the beneficial effect of mutation moves
in preventing premature convergence is well established
[7, 8, 9]. This is hitherto primarily discussed with respect
to an improved sampling efficiency, whereas our analysis
below in fact demonstrates that it also has important
bearings on the robustness of the approach.

With such move type fixed, the only algorithmic pa-
rameters left are the size of the population and the way
how trial structures replace current members of the pop-
ulation if they are more “fit”, i.e. energetically more
stable. In a corresponding periodic population update
a large number of new trial structures is first created
by taking all possible pairings within the existing pop-
ulation and only doing the replacement step afterwards.
Particularly for larger populations this bears the danger
of creating a lot of new trial structures out of members
that still have a low fitness. This can be circumvented by
always allowing only a certain fraction of the most sta-
ble clusters in the population to mate, which comes at
the price of adding with this fraction another unknown
technical parameter with impact on the algorithm effi-
ciency. Another alternative that gets away without this
is a dynamic population update [3], which we indeed ver-
ified to be much more efficient than a periodic population
update for all systems and settings discussed below. In
this procedure new trial structures are still created by
sequentially taking all possible pairings within the pop-
ulation, which then automatically includes twinning mu-
tations in form of the self-pairings. However, in contrast
to a periodic update the fitness of a new trial structure
is immediately evaluated. If it is more stable than any of
the two parent structures (one parent structure in case
of the mutations), it directly replaces the highest energy
member of the entire population, thereby quickly elimi-
nating the least fit configurations. In the conceptual idea
of a genetic algorithm genetic diversity is hereby enforced
by rejecting trial structures that correspond to local PES
minima that are already represented in the current pop-
ulation.

This leaves as the sole undetermined technical param-
eter of the present GA implementation the size of the
population, the optimum value of which is a priori un-
known for an unknown system. In order to arrive at
a trend understanding of how much the algorithm effi-
ciency depends on a judicious choice of this parameter
we resort to the well-studied problem of the structural
optimization of Lennard-Jones (LJ) clusters, i.e. clusters
of atoms interacting with each other via the well-known
LJ pair potential,

uLJ(r) = 4εLJ

[

(σLJ

r

)12

−

(σLJ

r

)6
]

, (1)

where r is the interparticle distance, σLJ is the effective
particle diameter, εLJ sets the energy scale of the short-

ranged soft core repulsion, and we use reduced units
σLJ = εLJ = 1 throughout. This simple model potential
is chosen for a number of reasons: First, the global min-
ima of LJ clusters in the targeted size range of up to 100
atoms are all well established [10, 11], thus providing a
well-defined criterion for the efficiency of a sampling run,
namely the number of trial moves N until this global min-
imum is found. Second, the ease with which this model
potential can be evaluated computationally allows us to
average over a sufficiently large number of runs starting
from different initial geometries and with different ran-
dom number sequences to be able to report statistically
relevant numbers Nav on the efficiency for a wide range of
cluster and GA population sizes. Last, not least, despite
the simplicity of the LJ potential the resulting PESs for
different cluster sizes range from easy to quite hard with
respect to the global optimization problem [12]. This en-
ables a systematic analysis of the algorithm performance
not only over the relevant cluster size range, but also
for both simple and complex PES topographies. Specif-
ically, we therefore focus on the series of single-funnel
LJ clusters with 10, 15, 20, 25, . . ., 65, and 70 atoms
for the prior aspect and contrast this with an investiga-
tion of the double-funnel LJ38 cluster for the latter. The
random structures to initialize the sampling runs are cre-
ated by randomly placing atoms inside a sphere of radius
5 with the constraint that the distance between any pairs
of atoms is more than 0.5. The reported values for Nav

are then obtained by averaging over many runs start-
ing from different random structures and random number
seeds. The targeted convergence of Nav within 5 percent
was usually achieved after about 100 different runs, and
only for the largest clusters an averaging over up to 175
runs was required. For the local geometry optimization
ensuing each move we employ the FIRE algorithm [13]
and consider the structure relaxed when all forces fall be-
low 10−3. Correspondingly optimized cluster structures
are identified as belonging to the same local PES mini-
mum, if their relative energies differ by less than 10−3.

RESULTS

With equivalent results obtained for all single-funnel
clusters, Fig. 1 summarizes the performance data for the
selected clusters LJ10, LJ45 and LJ65 spanning the stud-
ied size range. Separately analyzed is the efficiency of
the algorithm when allowing for only mutation or only
mating moves, as well as for both. Intriguingly, it is pri-
marily in the latter case that the algorithm exhibits an
unusual robustness in the sense that the overall perfor-
mance varies over less than a factor of two for a wide
range of population sizes and for all cluster sizes studied.
Recalling that the essential idea to employ a population
was to potentially combine information from disparate
parts of the high-dimensional PES through the mating of
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FIG. 1: GA performance for the single-funnel LJ10, LJ45 and
LJ65 clusters. Shown is the dependence of the average number
of trial structures Nav required to find the global minimum
on the employed population size. The different lines for each
cluster size correspond to GAs employing only mating moves,
only mutation moves or both.

different cluster configurations, the large influence of the
twinning mutations obtained particularly for the larger
cluster sizes, e.g. LJ65 in Fig. 1, is counterintuitive at
first sight. In order to rationalize it, let us first further
qualify what is meant with disparate parts. “Disparate”
in this context does not exclusively refer to the PES to-
pography, but also to the move types used. Any area of
the PES is “disparate” from a current configuration, if
it cannot be efficiently reached by the employed moves,
and areas that are “disparate” for one move type may
actually be quite “close” for another. The almost equal
performance of the GA when using either only mutation
or additionally mating moves for the smallest clusters
like LJ10 thus reflects that already the mutation moves
alone enable quite efficient jumps everywhere on the cor-
responding PES of still rather limited dimensionality. In
this situation there is no added value when enabling a
mating of different members of the population. On the
contrary, a larger population creates an increasing over-
head as it takes more trial moves until the loop over all
population members is completed. Especially when only
enabling mutation moves, a larger population then pri-
marily means that for a given number of trial moves ev-
ery single cluster configuration is less often subject to a
change and the algorithm needs overall a larger Nav to
more or less optimize all population members in parallel.
Correspondingly and as illustrated by Fig. 1, for all clus-
ter sizes the performance of a GA based exclusively on
mutation moves decreases monotonously with population
size.

It is only for the larger cluster sizes that mating dif-
ferent population members starts to pay off, cf. Fig. 1.
In the increasingly higher-dimensional PESs these moves
are now apparently able to reach areas that can not be
accessed that efficiently by mutations anymore. In the
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FIG. 2: Energy of the GA population members in the sam-
pling of LJ65 as a function of the number of trial moves for
a population of 5 (main plot) and 30 (inset). On each plot
the three curves of the same type (dotted lines for mutation-
only GA, and dashed lines for mating-only GA) represent the
lowest, average and highest energy in the population.

sense of genetic diversity this feature will be the better
the larger the population. On the other hand, also here
the increasing overhead argument applies, rationalizing
why the performance curves for the mating-only GA in
Fig. 1 start to develop a minimum at an optimum pop-
ulation size that gets more pronounced the larger the
cluster size. From the simplistic perspective of an in-
creasing value brought about by mating in increasingly
higher-dimensional PESs, the shift of this minimum to
larger optimum population sizes for the larger clusters
visible in Fig. 1 is also quite intuitive.

While this view furthermore rationalizes the poor per-
formance of mating-only GA at very small population
sizes, the then much higher efficiency of the GA based
solely on mutations is quite surprising. Analyzing the en-
ergies of the most and least favorable population member,
as well as the average energy within the population dur-
ing the sampling run we can nevertheless trace it back to
limitations of small-population mating-only GA in bring-
ing the system down through the lowest part of the PES
funnel. Figure 2 illustrates this for the LJ65 cluster for
both a very small population of 5, for which mating-
only is much less efficient than mutation-only GA, and
a larger population of 30, for which mating-only is more
efficient than mutation-only GA, cf. Fig. 1. For the
small population, the energy of the most stable cluster
in the population decreases in both algorithm variants
almost equally quickly in the initial 250 trial moves. At
the same time the wider jumps in configuration space en-
abled by mating moves eliminate much more effectively
the highest-energy members in the population and the
average energy in the mating-only GA is brought down
more rapidly than in the mutation-only variant. How-
ever, exactly this tendency of mating moves to induce
more drastic changes to the cluster structure turns into
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FIG. 3: Same as Fig. 1, but for the double-funnel LJ38 cluster.

a disadvantage in the continued sampling run, when in
particular for the close-packed LJ clusters often only mi-
nor modifications to e.g. erase remaining dislocations
or coordination faults are required to bring the system
through the end of the PES funnel towards the global
minimum. Correspondingly, Fig. 2 shows a saturation
of the mating-only GA run at higher energies than the
mutation-only GA, where in the latter e.g. twinning mu-
tations with small rotational angle can efficiently induce
possibly required small structural modifications. This
limitation is lifted in larger populations which now con-
tain sufficiently many and diverse configurations that also
mating moves inducing smaller structural modifications
occur with sufficient probability. This is reflected in Fig.
2, where the lowest-energy curves for the population of
30 decrease now similarly for both algorithm variants,
and the mating-only GA ultimately results as the more
efficient approach.

We therefore arrive at an interesting performance
crossover between mating-only and mutation-only GA as
a function of population size. For large and therewith di-
verse enough populations the added value brought about
by mating kicks in and mating-only GA is preferred. On
the contrary, if the population is too small this diversity
bonus no longer applies. While still not as efficient as
mating-only GA at optimum population size, mutation-
only GA is then the more robust approach as it is better
able to cope with the possible requirement of subtle struc-
tural modifications when already close to the optimum
geometry. Most intriguingly, yet with the presented un-
derstanding also quite naturally, Fig. 1 shows that these
two effects are to some degree additive in the sense that
the GA implementation allowing both mutation and mat-
ing exhibits a performance that in the two extremes of
very small and very large populations is virtually identi-
cal to the performance of mutation-only and mating-only
GA, respectively. In the end, this leads to an efficiency
that is very robust with respect to the employed popu-
lation size for all cluster sizes studied and varies by less
than a factor of two for the wide range of populations
shown in Fig. 1.

This result largely carries over to the more complex
PES topography of the double-funnel LJ38 cluster. As
shown in Fig. 3, also here the mutation-only GA is most

efficient at small population sizes. That this efficiency is
in this case so pronounced compared to the mating-only
GA nicely corroborates the interpretation developed from
the single-funnel cluster data. As discussed in detail by
Wolf and Landman [7], there are a multitude of struc-
tures in the energetic neighborhood of the LJ38 global
minimum, a fcc truncated octahedron, that essentially
correspond to multitwinned fcc crystallites. With the
initial trial moves likely to bring the system into one of
these low-energy configurations, it is particularly twin-
ning mutation moves that can then very efficiently reach
the optimum pure fcc structure. In the present GA im-
plementation applying both mating and mutation, these
twinning mutations do not occur too often in the loop
over all pairings, which is why the performance of this
variant in this regime is still worse than mutation-only,
albeit significantly improved compared to mating-only
GA. Obviously, this suggests that the actual degree to
which mutation moves are admixed may be optimized
for specific systems, yet what we consider the more im-
portant conclusion from our work is that whatever the
percentage, mutation admixture seems to generally im-
prove the robustness of the GA algorithm with respect
to the employed population size. From the presented un-
derstanding of enabling small structural modifications we
believe that this feature is in fact not restricted to the
actual twinning mutations used here, but should equally
hold for e.g. single or collective particle moves in which
one or several atoms of the cluster are randomly dis-
placed, as well when using more sophisticated crossover
operations.

CONCLUSIONS

In conclusion, we have investigated the performance
dependence of a “cut and splice” genetic algorithm on
the employed population size. Focusing on the geometry
optimization of both a series of single-funnel LJ clusters
up to 70 atoms and the double-funnel LJ38 cluster we
generally obtain that admixing twinning mutation moves
leads to an improved robustness of the algorithm. Here,
improved robustness denotes an efficiency in finding the
global minimum that varies less over a wide range of pop-
ulation sizes studied and that in particular for small pop-
ulations is significantly improved compared to a mating-
only GA. The latter is traced back to an enhanced possi-
bility of small structural modifications offered by muta-
tion moves. Especially for systems favoring close-packed
structures like the LJ clusters this is essential to erase re-
maining dislocations or coordination faults and to bring
the system through the end of the PES funnel towards
the global minimum. Within this understanding we be-
lieve that this finding is not specific to LJ interactions,
nor is it restricted to the “cut and splice” mutation and
mating moves studied here. This suggests that is is in
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general recommended to admix mutation moves, not only
because of their well-known beneficial effect on the sam-
pling [7], but also to increase the robustness of the GA
algorithm with respect to the a priori unknown parame-
ter population size.

The latter feature is particularly important for first-
principles GA sampling, and in this respect the very sta-
ble performance of the present mating+mutation GA im-
plementation, achieved without any system-specific tun-
ing, is very promising. To set this into perspective, one
should compare the about 2000 moves required to find
the ground state of the complex LJ38 PES with any rea-
sonable population size to the roughly equal number of
moves needed by the classic basin-hopping (BH) scheme
[14], when its central technical parameter, the effec-
tive temperature, is specifically optimized to the double-
funnel PES topography [15]. Latest reports indicate that
more sophisticated GA [16] or BH [15] schemes (includ-
ing the recently introduced minima-hopping [17]) may
reduce this number by a factor ∼ 2, but at the expense
of introducing a manifold of technical parameters. While
not large, such a reduction would still be highly desirable
in view of the high computational cost incurred by first-
principles based sampling. Not withstanding, it would
not be of much use if only achieved after excessive pa-
rameter optimization for a specific PES landscape. Con-
sequently, we believe that further progress in this direc-
tion requires revisiting the global optimization problem
from the perspective of algorithmic robustness as done in
the present work.
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