22 research outputs found
The effectiveness of constraint-led training on skill development in interceptive sports: a systematic review (Clark, McEwan and Christie) â a commentary
Clark, McEwan and Christie's systematic review1 offers a timely examination of current literature assessing effects of a constraints-led approach (CLA) to training on âtechnical and cognitive skill in sportâ, in comparison to traditional training methods. They concluded that, currently, there is strong evidence to advocate for the effects of training interventions that espouse benefits of constraints-led training on acquiring skill in interceptive actions. Clark, McEwan and Christie reported that 18 studies satisfied their proposed inclusion criteria and, of these studies, 77% provided evidence of the effectiveness of the CLA. Consequently, Clark, McEwan and Christie argued that a âthe implementation of the constraints-led approach within interceptive sport can be advocatedâ (p. 17). This is a revealing insight, which supports their claims that this finding âprovides the opportunity for researchers to collect more compelling evidence to answer the question: âDoes constraint-led training assist with the development of technical skills within interceptive sport?ââ. While we endorse their call for more empirical evidence on the effectiveness of a CLA to practice and training design, we qualify it by highlighting some limitations of Clark, McEwan and Christie's systematic review
EB Ford revisited: assessing the long-term stability of wing-spot patterns and population genetic structure of the meadow brown butterfly on the Isles of Scilly
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Data files of wing spot sizes and AFLP genotypes available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.j7v42.Understanding selection in the wild remains a major aim of evolutionary ecology and work by Ford and colleagues on the meadow brown butterfly Maniola jurtina did much to ignite this agenda. A great deal of their work was conducted during the 1950s on the Isles of Scilly. They documented island-specific wing-spot patterns that remained consistent over about a decade, but patterns on some islands changed after environmental perturbation. It was suggested that these wing-spot patterns reflected island-specific selection and that there was little migration between islands. However, genetic studies to test the underlying assumption of restricted migration are lacking and it is also unknown whether the originally described wing-spot patterns have persisted over time. We therefore collected female butterflies from five of Ford's original study locations, including three large islands (St Mary's, St Martin's and Tresco) and two small islands (Tean and St Helen's). Wing-spot patterns had not changed appreciably over time on three of the islands (two large and one small), but were significantly different on the other two. Furthermore, analysis of 176 amplified fragment length polymorphisms revealed significant genome-wide differentiation among the five islands. Our findings are consistent with Ford's conclusions that despite the close proximity of these islands, there is restricted gene flow among them.Heredity advance online publication, 2 November 2016; doi:10.1038/hdy.2016.94.We thank the Genetics Society for a fieldwork grant (to DJH) that funded the collection trip and DJH thanks Mike Johnson for sparking interest in this area. SWB is supported by the Australian Research Council and a Ramsay Fellowship, NW by a Royal Society Wolfson Fellowship and NERC and DJH by the Leverhulme Trust
Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes
Gas separation membranes are one of the lowest energy technologies available for the separation of carbon dioxide from flue gas. Key to handling the immense scale of this separation is maximised membrane permeability at sufficient selectivity for CO2 over N2. For the first time it is revealed that metals can be post-synthetically exchanged in MOFs to drastically enhance gas transport performance in membranes. Ti-exchanged UiO-66 MOFs have been found to triple the gas permeability without a loss in selectivity due to several effects that include increased affinity for CO2 and stronger interactions between the polymer matrix and the Ti-MOFs. As a result, it is also shown that MOFs optimized in previous works for batch-wise adsorption applications can be applied to membranes, which have lower demands on material quantities. These membranes exhibit exceptional CO2 permeability enhancement of as much as 153% when compared to the non-exchanged UiO-66 mixed-matrix controls, which places them well above the Robeson upper bound at just a 5 wt.% loading. The fact that maximum permeability enhancement occurs at such low loadings, significantly less than the optimum for other MMMs, is a major advantage in large-scale application due to the more attainable quantities of MOF needed
Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites
Plant science