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ABSTRACT

Articular cartilage is a connective tissue consisting of a
specialized extracellular matrix (ECM) that dominates the
bulk of its wet and dry weight. Type II collagen and
aggrecan are the main ECM proteins in cartilage. However,
little attention has been paid to less abundant molecular
components, especially minor collagens, including type IV,
VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for
only a small fraction of the mature matrix, these minor
collagens not only play essential structural roles in the
mechanical properties, organization, and shape of articu-
lar cartilage, but also fulfil specific biological functions.
Genetic studies of these minor collagens have revealed
that they are associated with multiple connective tissue
diseases, especially degenerative joint disease. The pro-
gressive destruction of cartilage involves the degradation
of matrix constituents including these minor collagens.
The generation and release of fragmented molecules
could generate novel biochemical markers with the
capacity to monitor disease progression, facilitate drug
development and add to the existing toolbox for in vitro
studies, preclinical research and clinical trials.
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ARTICULAR CARTILAGE

Articular cartilage is the most widespread load-bearing car-
tilage in adults. It is a highly specialized and mechanically
resilient connective tissue found on the surface of sub-
chondral bone in diarthrodial joints. Cartilage contains

specialized cells called chondrocytes. These cells occupy
1%–3% of the total tissue volume in fully developed tissue
and their surrounding extracellular matrix (ECM) is a com-
plex network made up of water, collagen, proteoglycans, and
other noncollagenous proteins. Other four types of cartilage
are fibroelastic cartilage, fibrocartilage, elastic cartilage, and
epiphyseal cartilage.

COLLAGENS

Collagens are the most abundant family of ECM proteins,
which account for two-thirds of the dry mass of adult articular
cartilage (Eyre, 2004). Numerous collagen subtypes have
been identified in articular cartilage, such as type II, IX, X, XI,
VI, XII, and XIV collagen (Van der Rest, 1987). Articular
cartilage collagen fibrils mostly consist of type II collagen
accompanied with a lesser amount of minor collagens, which
provide cartilage with tensile strength and contribute to the
physical properties of the mature matrix (Heinegård and
Saxne, 2011; Ichimura et al., 2000). However, little is known
about the processing of these minor collagens and how their
turnover is affected by the progression of osteoarthritis (OA).
New knowledge about turnover of those minor collagens will
lead to deeper understanding of the dynamics of cartilage
turnover, thereby facilitating the development of novel
biomarkers that reflect joint health and drug discovery in OA.

In this review, we present an outline of minor collagens in
articular cartilage, focusing on the link between these
extracellular matrix proteins to OA. Finally, we elaborate on
how knowledge of these associations can be used to
develop new biomarkers, which provide insight into the
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translational medicine of OA. Such biomarkers also indicate
the effect of a drug on cartilage metabolism and the mode of
action. Even though a number of biomarkers already exist,
there is a clear medical need for new biomarkers for per-
sonalized healthcare (PHC) in OA, biomarkers that more
accurately reflect biological activity in different phenotypes of
the disease as well as serve as tools in diagnosis and
prognosis. This may assist in identification of patients that
are in foremost need of treatment and may respond opti-
mally, with the highest efficacy and lowest safety concerns,
to a given treatment. Moreover, biomarkers aid pharma-
ceutical companies develop better targeted therapeutic
strategies for selected subpopulations of OA patients.
Biomarkers can also enable early decision-making and
benchmarking. It is becoming increasingly clear, that one
simple marker is insufficient for improved diagnosis, and
thus multiple makers that reflect different aspects of the
pathophysiology and clinical phenotypes may most likely be
needed in combination (Kraus et al., 2015; Karsdal et al.,
2014; Henrotin et al., 2016).

The various types of minor collagens found in articular
cartilage are listed in Table 1 and schematically illustrated in
Fig. 1.

DISTRIBUTION, STRUCTURE, AND FUNCTION OF
MINOR COLLAGENS

Type VI collagen—a microfibrillar collagen

Although it only makes up 1% of total collagen in adult
articular cartilage (Eyre et al., 2006), type VI collagen is
mainly enriched in the pericellular matrix (PCM), involving
the attachment and integrity of chondrocytes. Type VI col-
lagen is able to bind to a wide variety of ECM proteins,
including type II collagen (Bidanset et al., 1992), type XIV
collagen (Brown et al., 1994), matrilin-1 (Wiberg et al.,
2001), and decorin (Bidanset et al., 1992), thereby forming
a network that anchors the chondrocyte to the PCM in
articular cartilage. Due to the high affinity with numerous
ECM components and cell membrane (Bidanset et al.,
1992; Wiberg et al., 2001), type VI collagen has been
hypothesized to play important roles in mediating cell–ma-
trix interactions and intermolecular interactions (Pfaff et al.,
1993).

The precise role of collagen VI has not yet been clearly
defined. However, type VI collagen may serve as a filter or
transducer for biochemical and/or biomechanical signals
from the cartilage ECM. Type VI collagen with lower
molecular weight was evident in the pathological osteoar-
thritic dogs sacrificed 3, 5, and 7 months after surgery in
comparison to the controls (McDevitt et al., 1988). It indi-
cated that degradation products of larger type VI chains
might be significant in the role this molecule plays in
osteoarthritis. The type VI collagen-deficient mice (Col6a1)
exhibited accelerated development of hip osteoarthritis, a
delayed secondary ossification process, and a loss of the

stiffness of the articular cartilage PCM (Alexopoulos et al.,
2009). Type VI collagen demonstrated an important role in
regulating the physiology of the synovial joint. In another
context, the deficiency of type VI collagen in mice resulted in
decreased stiffness and increased chondrocyte swelling
(Zelenski et al., 2015). These findings suggest that type VI
collagen has essential roles in transmitting mechanical and
osmotic stresses from the ECM to the chondrocytes (Ze-
lenski et al., 2015). The soluble type VI collagen was
reported to promote chondrocyte proliferation under both
healthy and osteoarthritic conditions. However, proliferation
was not observed upon treatment of immobilized type VI
collagen in chondrocytes, indicating that soluble type VI
collagen can be applied for autologous chondrocyte
implantation to expand chondrocytes (Smeriglio et al., 2015).
It was reported that a variant in the human Col6a4 gene is
associated with knee OA in Japanese and Chinese popu-
lations, but not found in a Korean population (Lee et al.,
2013) nor in European OA individuals (Wagener et al.,
2009). The contradictory findings could be explained by
either the ethnic differences in OA susceptibility genes or the
differences of criteria in OA selection.

Type IX, XII, XIV, XVI, and XXII collagen—the FACIT
collagens

These collagens are members of the fibril-associated colla-
gen with interrupted triple helix (FACIT), which do not form
fibrils by themselves, but are associated with the surface of
various fibrils.

Type IX collagen

Type IX collagen simply makes up 1%–5% of total collagen
in adult articular cartilage and 10% of that in fetal cartilage
(Eyre et al., 2006). It is usually found in tissues containing
type II collagen, like growth plate cartilage and adult articular
cartilage (Eyre et al., 1987). It forms the unique hetero fibril
network in the matrix of cartilage via association with type II
and type IX collagen (Wu et al., 1992). Type IX collagen is
extensively cross-linked with type II collagen through the
lysyl oxidase mechanism (Wu et al., 1992). Eyre et al. dis-
covered that the covalent cross-linking formed at the
N-telopeptide of α1(II) chain and the COL1 in all three chains
of type IX collagen in both human and bovine cartilage (Eyre
et al., 2004). Additionally, Eyre et al. also observed the
binding inter type IX collagen molecules at the COL2 domain
and the non-collagenous globular domain (NC1) domain
(Wu et al., 1992).

Mice with a completely inactivated Col9a1 gene showed
no detectable abnormalities at birth but thereafter had a
severe degenerative joint disease resembling human OA at
4-months or older (Fässler et al., 1994). In a different con-
text, the knockout of type IX collagen altered the time course
of callus differentiation during bone fracture healing, and
delayed the maturation of cartilage matrix (Opolka et al.,
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Table 1. Minor collagen overview

Collagen Distribution in
cartilage

Binds to other ECM proteins Disease-related model Classifications Susceptible
to
Proteinases

Type IV Pericellular
matrix of
articular
cartilage

Integrins, nidogen,
fibronectin, TGF-β (Eyre
et al., 2006)

NA Hexagonal
network-
forming
collagen

MMP-2, 9,
12

Type VI Pericellular
matrix of
articular
cartilage

Type IV, biglycan, decorin,
perlecan, NG2
proteoglycan, fibronectin,
tenascin, integrin (Bidanset
et al., 1992; Brown et al.,
1994)

Col6a1 knockout mice
showed accelerated
development of
osteoarthritis (Wiberg
et al., 2001)

Beaded
filament
collagen (or
microfibrillar
collagen)

MMP-2, 9

Type IX Growth-plate
cartilage, adult
articular
cartilage

Matrilin-4, type XII collagen,
thrombospondin-4,
fibronectin, βig-h3, and
epiphycan, type II collagen,
COMP, fibronectin,
fibromodulin, and
osteoadherin (Pfaff et al.,
1993; McDevitt et al., 1988;
Alexopoulos et al., 2009;
Zelenski et al., 2015;
Smeriglio et al., 2015; Lee
et al., 2013)

Femoral and tibial
cartilage in ovalbumin-
induced rheumatoid
arthritis rabbit model
showed significantly
reduced type IX collagen
content (Wagener et al.,
2009)

Tibial cartilage in
spontaneously
osteoarthritic canine had
different distribution of
type IX collagen
compared to healthy
tissue (Eyre et al., 1987)

Col9a1 knockout mice
developed a severe
degenerative joint
disease resembling
human osteoarthritis (Wu
et al., 1992)

FACIT MMP-3, 13

Type X Hypertrophic
zone of the
growth plate
and basal
calcified zone
of articular
cartilage

Anchorin CII NA Hexagonal
network-
forming
collagen

MMP-1, 2,
3, 13

Type XI Articular
cartilage (Eyre
et al., 2004;
Fässler et al.,
1994)

Heparin, heparan sulfate, and
dermatan sulfate (Opolka
et al., 2007)

Type XI collagen induced
mild arthritis in DBA/1
mice (Hagg et al., 1997)

Immunizing type XI
collagen induced chronic
arthritis, IgG deposits in
cartilage, and joint
destruction in the Lewis
rat (Czarny-Ratajczak
et al., 2001)

Fibril-forming
collagen

MMP-2

Type XII Decorin, fibromodulin,
tenascin-X, COMP
(Lohiniva et al., 2000;
Kuivaniemi et al., 1997)

NA FACIT NA
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2007). A deficiency of α1(IX) in mice has been shown to lead
to instability of hyaline cartilage (Hagg et al., 1997). Other
studies suggested that mutations of α1(IX) (Czarny-Rata-
jczak et al., 2001), α2(IX), and α3(IX) (Lohiniva et al., 2000)
can elicit multiple epiphyseal dysplasia, a heterogeneous
skeletal disorder with early-onset OA as a manifestation.
Mutations in the Col9a2 are also linked to multiple epiphy-
seal dysplasia characterized by symptoms ranging from pain
and stiffness in joints to OA (Kuivaniemi et al., 1997). In
another experiment, the mutated type IX collagen had a mild
chondrodysplasia (Nakata et al., 1993). In a rabbit model of
ovalbumin-induced rheumatoid arthritis, the NC4 domain of
type IX collagen content was reduced in femoral and tibial
cartilage, revealing early damage of type IX collagen in
articular cartilage following induction of joint inflammation
(Kojima et al., 2001). The immunohistochemical staining of
type IX collagen in normal mature and spontaneously
osteoarthritic canine tibial cartilage revealed that changes in
type IX collagen distribution played crucial role in the chon-
dron remodeling and chondrocyte cluster formation associ-
ated with osteoarthritic degeneration (Poole et al., 1997). All
these findings highlight that type IX collagen may play
important roles in the pathogenesis of arthritis diseases, the
formation of a stable collagen network and in the mainte-
nance of cartilage organization and integrity. In humans,
Col9a1 has been identified as a susceptibility locus for
female hip OA (Mustafa et al., 2000; Loughlin et al., 2002;

Alizadeh et al., 2005), suggesting that Col9a1 is involved in
hip OA. The decreased expression of type IX collagen in the
cartilage may render the matrix more subject to mechanical
forces, thereby resulting in the pathogenesis of human OA.
Type IX collagen is also used to induce chronic arthritis in the
DBA/1 mice (Boissier et al., 1990).

Taken together, type IX collagen is crucial for the main-
tenance of cartilage matrix and formation of collagen
meshwork. Turnover of type IX collagen by proteases is an
early event in degenerative joint disease. The reduced level
of type IX collagen may contribute to the pathogenesis of
OA.

Type XII collagen

Type XII collagen shares structural homologies with type IX
and type XIV collagens (Yamagata et al., 1991). Additionally,
in common with several other FACITs, the length of α1(XII)
chains is affected by complex alternative splicing of type XII
collagen primary transcripts. As a result, two distinct forms of
type XII collagen—short(XIIB) and long(XIIA)—are gener-
ated. Although both forms of type XII collagen are present in
cultured fibroblasts—the expression of long or short form
being determined by whether cells grow in monolayer or 3D
culture—the long transcript variant predominates. The long
form is also the only type XII collagen variant expressed in
human fetal chondrocytes (Keene et al., 1991).

Table 1 continued

Collagen Distribution in
cartilage

Binds to other ECM proteins Disease-related model Classifications Susceptible
to
Proteinases

Type
XIV

Uniformly
throughout the
articular
cartilage
(Nakata et al.,
1993)

Decorin and type I collagen
(Kojima et al., 2001)

NA FACIT MMP-13

Type
XVI

Territorial matrix
of
chondrocytes
(Poole et al.,
1997)

Types II and XI collagen,
fibrillin-1 and fibronectin
(Poole et al., 1997; Mustafa
et al., 2000)

NA FACIT NA

Type
XXII

Articular surface
of joint
cartilage

Fibrillins, integrins (α2β1 and
α11β1) (Loughlin et al.,
2002; Alizadeh et al., 2005)

NA FACIT NA

Type
XXVII

Proliferative
zone
chondrocytes
(Boissier et al.,
1990)

NA Knockdown of COL27a1 in
zebrafish embryos
delayed and decreased
vertebral mineralization,
morphological
abnormalities and
scoliosis (Yamagata
et al., 1991)

Fibril-forming
collagen

NA

FACIT = Fibril-associated collagens with interrupted triple helices. COMP = cartilage oligomeric matrix protein. NA = Not available.
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In terms of biological function, type XII collagen has been
implicated in fibril formation, cell adhesion, fibrosis and
osteogenesis, and in areas of high mechanical stress may
serve as a protector of tissue integrity (Chiquet et al., 2014;
Arai et al., 2008). Immunohistochemistry staining and fibril-
logenesis studies show that type XII collagen can be incor-
porated into type I collagen fibrils in dense connective
tissues and bone. It potentially helps to mediate interactions
between fibrils and other matrix macromolecules/cells, or
acts as a ‘shock-absorber’ similar to proteoglycans in carti-
lage (Arai et al., 2008; Taylor et al., 2014). Type XII collagen
associates with articular cartilage and growth plate region
during rat forelimb development, and may be necessary for
microenvironment that supports hyaline cartilage formation
(Taylor et al., 2014; Gregory et al., 2001). Type XII collagen
also has been shown to be present in the secretome of
human passaged chondrocytes (Polacek et al., 2011),
however, not in the secretome of cartilage explants (Taylor
et al., 2014).

Type XIV collagen

Type XIV collagen is a large, non-fibrillar ECM protein,
structurally similar to type XII collagen. In cartilage, a pop-
ulation of type XIV collagen exists a chondroitin sulfate

proteoglycan, since it was sensitive to chondroitinases ABC
and AC treatments (Watt et al., 1992).

Type XIV collagen is prevalent within connective tissues
that contain large amounts of fibrillar collagens, where it
localizes near the surface of banded collagen fibrils (Nish-
iyama et al., 1994). Immunofluorescence localization
showed that type XIV collagen was prominent at the liga-
ment-bone junction, and in bovine cartilage. Type XIV col-
lagen localizes relatively uniformly throughout the articular
cartilage, but is absent from growth plate regions (Watt et al.,
1992).

In addition to reported interactions with type I, II, V, and VI
collagens, type XIV collagen also interacts with heparin,
CD44, and cartilage oligomeric matrix protein (COMP) (Giry-
Lozinguez et al., 1998). Type XIV collagen is predominantly
expressed in differentiated tissues and late embryonic
development. Ruehl et al. postulated that it is involved in
tissue differentiation, and particularly, its first FN-III domain
are potent inducers of reversible cellular quiescence and
differentiation in human and mouse mesenchymal cells
(Ruehl et al., 2005). Their study saw reduction of de novo
DNA synthesis without alterations to cell numbers and via-
bility and restoration of maximal proliferation upon serum
supplementation. Similarly to type XII collagen, type XIV
collagen is often found in areas of high mechanical stress

Type IV collagen

Type VI collagen

Network-forming
collagen

Type X collagen

Microfibrillar
collagen 

•
•
•

•

•
•
•
•

Fibril-forming
collagen

Type XI collagen

Type XXVII collagen

•

•
•
•

Type IX collagen

FACIT collagens 

Type XII collagen

Type XIV collagen

Type XVI collagen

Type XXII collagen

•
•

•
•

•
•

•

•
•

Form a network anchoring the chondrocyte to the PCM 
Mediate cell–matrix interactions and intermolecular interactions  
A filter or transducer for biochemical and/or biomechanical signals from the cartilage ECM 

Maintain chondrocyte phenotype and viability 

Modify the cartilage matrix for calcification 
Maintain tissue stiffness, regulate chondrocytes metabolism and interact with hypertrophic chondrocytes 
Facilitates the normal distribution of matrix vesicles and proteoglycans within the growth plate 
Facilitate type II collagen fibrils and chondrocyte removal from the matrix during vascular invasion 

May regulate cartilage formation  

Transition of cartilage to bone during skeletogenesis 
Structural role in the PCM of the growth plate 
Organization of the proliferative zone 

Formation of a stable collagen network 
Maintenance of cartilage organization and integrity 

Mediate interactions between fibrils and other matrix macromolecules/cells 
Protector of tissue integrity

Fibrillogenesis
Maintain the integrity and mechanical properties of the tissue

Contribute to the mechanical stability of myotendinous junctions 

Organize the ECM by stabilizing collagen fibrils, anchoring microfibrils 
Mediate intracellular signaling affecting cell adhesion, proliferation, and invasiveness 

Figure 1. The schematic of minor collagens in articular cartilage. Reproduced with permission from Richard-Blum, S. The

collagen family. Cold Spring Harb Perspect Biol 2011;3:a004978. PCM: pericellular matrix; ECM: extracellular matrix.
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(Hemmavanh et al., 2013), and has roles in fibrillogenesis
and maintaining the integrity and mechanical properties of
the tissue (Chen et al., 2015).

Type XVI and XXII collagen

Type XVI collagen has been identified in the territorial matrix
of the chondrocytes, associating with thin weakly banded
collagen fibrils containing types II and XI collagen (Kassner
et al., 2003). In cartilage, type XVI collagen is a component
of small heterotypic D-banded fibrils (Kassner et al., 2003)
and is strongly expressed in differentiating chondrocytes (Lai
and Chu, 1996). Type XVI collagen may be incorporated into
structurally and functionally discrete matrix aggregates in
cartilage. Its main function is to organize the ECM by stabi-
lizing collagen fibrils, anchoring microfibrils, mediating
intracellular signalling affecting cell adhesion, proliferation,
invasiveness as well as the formation of focal adhesions.

It has been shown that N-terminal processing of type XVI
collagen results in 182 kDa and 78 kDa fragments (Kassner
et al., 2004), whereas C-terminal and subsequent N-terminal
processing results in 150 kDa, 110 kDa, 50 kDa, and 35 kDa
fragments, respectively (Grässel et al., 1996). Such frag-
ments may be utilized as targets of biochemical markers for
cartilage biology.

Type XXII collagen is expressed at the junction between
synovial fluid and surface of articular cartilage (Koch et al.,
2004) and associated with the extrafibrillar matrix in carti-
lage. Type XXII collagen is also detectable in human arthritic
joints, but the immunofluorescence staining pattern is
broadened and fuzzy. Unlike other FACIT collagens, type
XXII collagen interacts with microfibrils, such as fibrillins or
type VI collagens instead of collagen fibrils (Koch et al.,
2004). Its function remains unknown, but may contribute to
the mechanical stability of myotendinous junctions (Koch
et al., 2004; Zwolanek et al., 2014). Type XXII collagen could
serve as a marker to explore pathologic processes of joint
diseases and to study tissue junction formation during
development and regeneration of cartilage due to its
expression location.

Type IV and X collagen—network-forming collagen

Type IV collagen is a network forming collagen, which is
exclusively found in the pericellular matrix of normal
articular cartilage, and osteoarthritic articular cartilage in
human and goat (Foldager et al., 2014; Jeng et al., 2013;
Kvist et al., 2008). However, controversially it was repor-
ted to be absent in any human cartilage subtypes including
hyaline, fibrous, and elastic cartilage (Wachsmuth et al.,
2006). Overexpression of regulator of MMP-13 increased
the expression of type IV collagen in chondrocytes (Wang
et al., 2015). Type IV collagen may be involved in main-
taining chondrocyte phenotype and viability and provide
clues to the progression of degenerative joint disorders
(Kvist et al., 2008).

Fragments originating from type IV collagen released by
protein remodeling have been thoroughly investigated for
their uses as biomarkers. Several formation and degradation
biomarkers, e.g. C4M, C4M2 (Karsdal et al., 2015), C4M3a
(Sand et al., 2016), C4M12a1, C4M12a3 (Sand et al., 2013),
P4NP 7S (Leeming et al., 2013), and Tumstatin (Hamano
et al., 2003) have been developed, indicating the role of type
IV collagen turnover in most connective tissue diseases.

Type X collagen is a homotrimeric collagen, which con-
sists of three identical α1(X) chains with 3 domains each, a
short triple helix, an NC1 at C-terminus, and a short non-
helical at N-terminus (NC2) (Shen, 2005). These structures
are believed to play a key role in modifying the cartilage
matrix for the subsequent bone formation during endo-
chondral ossification (Kwan et al., 1991). Type X collagen is
inclined to be cleaved by interstitial collagenase, gelatinase,
human neutrophil elastase, pepsin, and trypsin (Frischholz
et al., 1998).

Type X collagen constitutes about 1% of total collagen in
adult articular cartilage (Eyre, 1991). It is revealed that 45%
of the total collagens produced by mature hypertrophic
chondrocytes are type X collagen (Shen, 2005). As a
specific collagen in cartilage, type X collagen is synthesized
by hypertrophic chondrocytes and is found exclusively in the
hypertrophic cartilage and the calcified zone of articular
cartilage (Gannon et al., 1991). Increased expression has
been observed in arthritis as the chondrocytes become
hypertrophic (Shen, 2005; Kwan et al., 1991; Frischholz
et al., 1998; Eyre, 1991; Gannon et al., 1991; van der Kraan
and van den Berg, 2012). Hypertrophic chondrocytes
express a variety of proteins and enzymes including type X
collagen, matrix metalloproteinase 13, alkaline phosphatase,
which do not seem to exist in normal proliferating chondro-
cytes (Steinert et al., 2009; D’Angelo et al., 2000). As the
most widely used marker for chondrocyte hypertrophy (Al-
varez et al., 2000), type X collagen is normally expressed in
human OA cartilage especially in the vicinity of lesions, but
not in human healthy articular cartilage (Brew et al., 2010).
Interestingly, Fukui et al. observed that the expression of
Col10a1 was lower in the more degenerated OA cartilage
than in the less degenerated area (Fukui et al., 2008, 2008).
The expression of type X collagen has been reported to be
upregulated in experimental animal OA models (Matsumoto
et al., 2009; Huebner et al., 2009) and human OA cartilage
as well (Walker et al., 1995). However, other studies have
shown that the expression of type X collagen in late stage
osteoarthritic cartilage was not significantly elevated in
human and rat OA (Brew et al., 2010; Appleton et al., 2007).
A possible explanation for this discrepancy could be that
chondrocyte hypertrophy-like change possibly only exists in
a subset of human OA patients.

The biological function of type X collagen is thought to
maintain tissue stiffness, regulate chondrocytes metabolism
and interact with hypertrophic chondrocytes (Luckman et al.,
2003). It also facilitates the process of calcification, the
normal distribution of matrix vesicles and proteoglycans
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within the growth plate. Mutations in the type X collagen
have been found in patients with Schmid metaphyseal
chondrodysplasia, an autosomal dominant cartilage disorder
with symptoms of coxa vara, short stature, and a waddling
gait (Kuivaniemi et al., 1997). Given its restricted localization
in the hypertrophic zone of the growth plate, type X collagen
appears to support endochondral bone growth and devel-
opment during the degradation of ECM in cartilage. It also
participates in the matrix calcification, facilitate type II colla-
gen fibrils removal and chondrocyte removal from the matrix
during vascular invasion (Schmid and Linsenmayer, 1985).

Type XI and XXVII collagen—the fibril-forming collagen

Type XI collagen is primarily cross-linked to each other in
cartilage. The cross-linkages result in the formation of
mature type XI collagen fibers with the help of type II and IX
collagen. It is broadly distributed in articular cartilage, ten-
dons, trabecular bone, and skeletal muscle (Mio et al.,
2007). Like the other fibril-forming collagens, type XI colla-
gen is synthesized as a procollagen which is subsequently
degraded to the mature form depositing into the ECM
(Sussman et al., 1984). The absence in the α chain of type
XI collagen leads to abnormally thickened cartilage fibril
(Hida et al., 2014) and OA (Rodriguez-Fontenla et al., 2014;
Jakkula et al., 2005). It has been shown that a type XI col-
lagen mutation results in increased degradation of type II
collagen in articular cartilage (Lu et al., 2002).

Type XI collagen accounts for 3% to 10% of total collagen
in adult articular cartilage and fetal cartilage, respectively
(Eyre, 2002). It is preferentially retained at the chondrocyte
surface and involved in the organization of the pericellular
matrix via interaction with cartilage proteoglycans (Smith
et al., 1989). In embryonic cartilage, type XI collagen has a
uniform diameter of ∼20 nm and diameter control is regu-
lated by the proportion of collagen II and XI while collagen IX
strongly increase the efficiency of fibril formation (Blaschke
et al., 2000). The thin fibrils in embryonic cartilage are con-
structed from a 10 + 4 microfibrillar arrangement (central
core of 2 microfibrils each of type II and type XI collagen)
(Holmes and Kadler, 2006). This arrangement explains why
the narrow fibrils are lacking in collagen XI knockout animals.

The mutation of type XI collagen in mice leads to Stick-
ler’s syndrome, an autosomal dominant disorder with
symptoms of mild spondyloepiphyseal dysplasia, OA, and
sensorineural hearing loss (Kuivaniemi et al., 1997). In other
experiments, the mice lacking type XI collagen exhibited
age-dependent OA-like changes in knee and temporo-
mandibular joints of heterozygous cho/+ mice (Xu et al.,
2003, 2005). Mutations in Col11a1 and Col11a2 have also
been shown to result in relatively mild chondrodysplasias
associated with OA (Myllyharju and Kivirikko, 2001). In
addition, two single-nucleotide polymorphisms (SNPs) in
Col11a1 showed significant association with hip OA in a
meta-analysis of nine genome-wide association studies
(Rodriguez-Fontenla et al., 2014). Type XI collagen is often

used to induce chronic arthritis in the DBA/1 mouse and rat
(Cremer et al., 1994). Interestingly, type XI collagen was
shown to be arthritogenic in Adderley Park rats but not in
Sprague-Dawley rats, although type II collagen-induced
arthritis in both strains (Morgan et al., 1983). Lu et al.
observed that immunization of rats with homologous type XI
collagen led to chronic and relapsing arthritis with different
genetics and joint pathology than arthritis induced with
homologous type II collagen (Lu et al., 2002).

Although the role of type XI collagen in the formation of
cartilage collagen fibrils remains unclear, type XI collagen
may regulate cartilage formation in that it is the first cartilage
collagen deposited by mesenchymal stem cells undergoing
chondrogenic differentiation (Xu et al., 2008).

Type XXVII collagen is prominently located at sites of
transition from cartilage to bone (Pace et al., 2003; Boot-
Handford et al., 2003) and in the matrix surrounding prolif-
erative chondrocytes in the epiphyseal growth plate (Plumb
et al., 2011). The expression of type XXVII collagen is reg-
ulated by factors SOX9 and Lc-Maf in chondrocytes (Mayo
et al., 2009; Jenkins et al., 2005).

In developing endochondral bone, type XXVII collagen
plays a role in the transition of cartilage to bone during
skeletogenesis (Hjorten et al., 2007). It is also believed to
play a key structural role in the pericellular extracellular
matrix of the growth plate and is required for the organization
of the proliferative zone (Plumb et al., 2011).

MINOR COLLAGEN METABOLITES AS
BIOCHEMICAL MARKERS OF JOINT DISEASE

Extracellular matrix remolding (ECMR) is a delicate equilib-
rium and a prerequisite for maintenance of a healthy tissue,
in which old proteins continuously are degraded and new
proteins are formed (Karsdal et al., 2013). This delicate
balance may be disturbed in connective tissues disease,
resulting in an altered turnover of both formation and
degradation, leading to a tissue imbalance. Irreversible
degradation in the cartilage collagen network is believed to
be a critical event involved in the pathophysiological pro-
gress of arthritis. During tissue remodeling, proteases
release small protein fragments into the circulation that may
be used as serological biomarkers of tissue degradation
(Karsdal et al., 2013). A sub-set of pathological proteases
are over-expressed in the affected tissue area, resulting in
release of protease specific fragments of signature proteins
of the arthritis ECM (Karsdal et al., 2010). These fragments
may be utilized as early diagnostic or prognostic serological
markers, as they originate from the structure of cartilage,
which in part is the consequence of disease.

Although accounting for only a small fraction of the
mature matrix, minor collagens not only play structural roles
in the mechanical properties, organization, and shape of
articular cartilage, but also have specific biological functions.
Genetic studies of these minor collagens in articular cartilage
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reveal they are associated with degenerative joint disease.
The progressive destruction of cartilage involves the degra-
dation of matrix constituents including these minor collagens.
We speculate that the release of fragmented molecules from
minor collagen could be potential complementary biomarkers
of the existing one. It has been shown that pro-peptides of type
VI collagen are released during collagen synthesis (Sun et al.,
2015; Sand et al., 2015). However, whether pro-peptides of
other minor collagens exist is still unknown. Many minor col-
lagens of articular cartilage have been shown to be suscepti-
ble to degradation by MMPs (Eckhard et al., 2016), e.g. IV
(Karsdal et al., 2013), VI, IX, and X collagen (He et al., 2014;
Schmid et al., 1986). The degradation products of type IX
collagen have been investigated in in vitro, ex vivo, and in vivo
cartilagemodels. AnMMP-3 cleavage site within NC2 domain
was revealed in vitro (Wu et al., 1991). D. Heinegård and
colleagues observed two MMP-13 cleavage sites within NC4
and COL3 domain respectively, in a bovine nasal cartilage
ex vivo induced by interleukin-1 (IL-1) (Danfelter et al., 2007).
They claimed that these degradation events precede the
major loss of type II collagen. This cleavage, which released
NC-4 fragments into synovial fluid and serum of patients with
OA or rheumatic arthritis (RA), caused the collagen network
swelling seen in articular cartilage in early experimental OA.
Type X collagen is subject to interstitial collagenase and
gelatinase cleavage at two distinct sites within triple helix
domain (Goldring et al., 2013). Heet al. reported thatC-Col 10,
which is a C-terminal fragment of the NC1 domain in type X
collagen, significantly elevated in OA patients compared to
healthy subjects (He et al., 2014; Gudmann et al., 2016). Type
XI collagen is resistant to collagenase but hydrolysed by
gelatinases resulting in a number of degradation products.
These events were believed to play a vital role in the turnover
of articular cartilage in health and disease states. Type VI
collagen was reported to be susceptible to degradation by
MMP2 and MMP9 (Veidal et al., 2011).

The collagen of articular cartilage is a co-polymeric net-
work of different types of collagen that interact specifically at
the molecular level. Types II, IX, and XI collagen are cross-
linked together, forming the extracellular framework of the
tissue. Cross-linking plays an important role in the ECM
meshwork, especially for the fibrillar collagens (types I–III)
and minor collagens (types IV–XIV), and thereby in tissue
integrity. Type XII and XIV collagen can be extracted without
proteolysis, so they appear not to be covalently polymerized
in the matrix (Watt et al., 1992), but are thought to bind
physically to collagen fibril surfaces via their COL1/NC1
domains. It is vital for collagen to be able to cross-link with
the neighboring collagen and/or other ECM components
(Reiser et al., 1992). Understanding the details of ECM
remodeling mechanisms in cartilage is critical for knowing
the pathological process of joint diseases. ECMR is a con-
tinuous and dynamic process of cartilage development,
maintenance, and pathogenesis. It results in uniquely mod-
ified proteins during the pathogenesis of disease. Specific
proteolytic activities are required for a range of cellular

functions and interactions with the ECM. However, in
pathological condition, proteolysis of collagen framework is
integral to the process of cartilage destruction and joint fail-
ure. So in theory, a range of type II, IX, and XI collagen
metabolites could be exploited as molecular biochemical
markers in arthritis.

PERSPECTIVES

Our understanding of the biology of joint disease has been
hampered by the lack of well-characterised biomarkers that
perform well in clinical studies. Imaging markers, e.g. radio-
graphs, which are the traditional method of defining clinical
arthritis, can only detect advanced, relatively gross changes in
joint anatomy and joint space narrowing only after significant
deterioration has already taken place. According to the FDA
critical path, there is an unmet need for the development of
novel diagnostic and prognostic OA biomarkers for use in
clinical trials (Karsdal et al., 2009). A strong prognostic or
burden of disease biomarker for osteoarthritis would be of
great value to healthcare all over the world, as the prevalence
of OA is continuously increasing.

Therefore biochemical markers are receiving increased
attention for their capability to detect earlier stages of the
disease process, monitor the progress of destruction and
prognose the development of arthritis, accurately and rela-
tively quickly assess the efficacy of therapy. Recently the US
National Institutes of Health (NIH)-industry partnership fun-
ded by the OA Biochemical Markers Network (Bauer et al.,
2006; van Spil et al., 2010) proposed the BIPED (Burden of
disease, Investigative, Prognostic, Efficacy of intervention,
and Diagnostic) classification system. It seems unlikely that
any single marker can offer sufficient sensitivity and speci-
ficity to predict the progression of arthritis and detect
response to medical treatment. This classification system
will help to improve the capability to develop and analyze
arthritis biomarkers (Henrotin et al., 2016; Bay-Jensen et al.,
2016; Kraus et al., 2015).

The release of protease degradation products provides
exciting opportunities for monitoring disease progression in
arthritis patients, and to investigate whether these fragments
are involved in facilitating the existing pathology, for exam-
ple, by inducing inflammation. As the fragmented molecules
of type II collagen have shown promise as molecular mark-
ers of joint disease, it is likely that identification of cleavage
fragments and other post-translational modifications (PTMs),
including cross-linking and isomerization from various minor
collagens in cartilage may produce unique joint disease-
specific biomarkers.

Development of simple and reliable non-invasive
biomarkers of OA is an important goal in clinical rheumatology
and will facilitate the design and evaluation of clinical trials on
disease modifying osteoarthritis drugs (DMOADs). Biomark-
ers that measure the stages and phenotypes of OA and, ide-
ally, predict risk of joint-related outcomes would significantly
improve decision-making in terms of dosing, treatment time,

Minor collagens of cartilage MINI-REVIEW

© The Author(s) 2017. This article is published with open access at Springerlink.com and journal.hep.com.cn 567

P
ro
te
in

&
C
e
ll



risk/benefit ratio, and transfer knowledge to label. By imple-
menting biochemical markers in all stages of drug develop-
ment, novel drug candidates may be identified at early
decision points and potential safety issuesmay be addressed
in a timely way, thereby increasing efficiency, reducing costs
and prompting efficient allocation of limited resources. Thus,
there is a need for different types of biochemical markers for
different stages of drug development in OA.

In conclusion, development of biomarkers assessing the
turnover of minor collagens may provide novel and transla-
tional diagnostic tools for investigating the effect of known
drug targets on cartilage in preclinical or clinical settings,
thereby providing proof of principle for test of those drugs in
OA clinical trials.
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