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Abstract With mounting concerns over health and

environmental effects of pesticides, the search for

environmentally acceptable substitutes has amplified.

Plant secondary metabolites appear in the horizon as

an attractive solution for green crop protection. This

paper reviews the need for changes in the techniques

and compounds that, until recently, have been the

mainstay for dealing with pest insects. Here we

describe and discuss main strategies for selecting

plant-derived metabolites as candidates for sustain-

able agriculture. The second part surveys ten impor-

tant insecticidal compounds, with special emphasis on

those involved in human health. Many of these

insecticidal metabolites, however, are crystalline

solids with limited solubility which might potentially

hamper commercial formulation. As such, we intro-

duce the concept of natural deep eutectic solvents for

enhancing solubility and stability of such compounds.

The concept, principles and examples of green pest

control discussed here offer a new suite of

environmental-friendly tools designed to promote

and adopt sustainable agriculture.

Keywords Insecticidal � Metabolomics � NADES �
Plant protection compounds � Solubility

Introduction

One of the greatest challenges that agriculture faces in

the twenty-first century is the need to feed the world’s

rapidly growing population (Hertel 2015). Selection of

high-yielding crop varieties have immensely benefit-

ted mankind. However, along with the success of this

‘green revolution’, severe outbreaks of pests and

diseases occurred. Agronomic improvements, as a

result of domestication, have often been accompanied

by limitations such as loss of resistance traits (Wink

1988; Rosenthal and Dirzo 1997). Minimizing crop

impairments due to pests has mainly been addressed

by the use of synthetic pesticides. Modern agriculture

partially owes its success to the discovery and

adoption of these chemicals (Cooper and Dobson

2007). Over the past decades, however, concerns have

been developed over environmental consequences as

well as long-term sustainability. Indiscriminate use of

synthetic pesticides has given rise to a number of

serious problems, including the widespread develop-

ment of resistance to pesticides, crop residues, non-

target effects, environmental contamination and
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public concerns about potential health risks (Handford

et al. 2015). Furthermore, increased pressure through

recent EU legislation (Sustainable Use Directive

2009/128/EC) caused a dramatic shift in pest man-

agement strategies, which is not only pushing for

tactics that are less reliable on chemicals but, in

addition, significantly restrict the application of sev-

eral important active ingredients (Plant Protection

Products Regulation 1107/2009) (European Commis-

sion 2009; European Union 2013a, b).

The above facts necessitate the urge for safer,

environmentally friendly approaches which, prefer-

ably, also exhibit new biochemical modes of action to

minimize development of pesticide resistance. Con-

sequently, natural compounds have increasingly

become the focus among those interested in discovery

of sustainable crop protection agents. This review

focuses on plant derived insecticides and discusses

their perspectives and challenges as sustainable alter-

natives in pest management approaches. These natu-

rally occurring bioactive compounds produced by

plants, also referred to as secondary metabolites, elicit

different insecticidal effects which act as feeding

deterrents, growth inhibitors, growth regulators, repel-

lents or oviposition inhibitors against a variety of

economically important insect species. Providing a

full overview of all plant secondary metabolites with

insecticidal potency is beyond the scope here. This

review will therefore be deliberately selective, taking

a few classes of secondary metabolites of plant origin

as examples for natural crop protection, in particular

those known to have beneficial health effects on

humans.

Though seemingly useful as green insecticides,

from a practical perspective secondary metabolites

can be a double-edged sword. An inherent problem of

many secondary metabolites is their low aqueous

solubility, which might hamper commercial formula-

tion. Consequently, organic solvents are often used in

large quantities. The need to replace these harmful

solvents by safer, non-toxic, inexpensive and easily

available ones has significantly increased over the past

decades, partially in response to the stringent envi-

ronmental regulations (Smith et al. 2008). Natural

Deep Eutectic Solvents (NADES), a new innovative

class of green media, have now come to the fore as

such major endeavor.

In this review, we discuss several approaches for

selecting plant secondary metabolites as candidates

for crop protection. Next, we will briefly focus on the

insecticidal properties of a selected sample of plant

defense compounds. Finally, NADES are introduced

as environmentally benign solvents, which brings a

new dimension to the agrochemical industry. In

developing this concept, we review the unique solvent

properties of NADES and explore their potential as

solubilization vehicles for plant derived crop protec-

tion agents.

Secondary metabolites for crop protection

Plants have evolved a variety of defense mechanisms

to reduce insect attack, both constitutive and induci-

ble. A key mechanism by which plants defend

themselves against attack is through the production

of a broad range of secondary metabolites. These

represent a large and varied reservoir of chemical

structures with many potential uses, including their

application as pesticides (Adeyemi 2010; Isman et al.

2011, 2006). Throughout history, numerous plants

have been successfully exploited for their pesticidal

properties (Thacker 2002). Today, phytochemicals are

used to develop commercial insecticides and serve as

models for new crop protection agents (Cantrell et al.

2012). Although plant derived biopesticides are gen-

erally considered to present lower risks to consumers

(Dayan et al. 2009) some plant metabolites such as

alkaloids (pyrrolizidines, tropane) as well as certain

glucosinolates and saponins are known for their

adverse and, possibly even toxic effects (Wiedenfeld

and Edgar 2011; Dorne and Fink-Gremmels 2013). On

the other hand, there are numerous phytochemicals,

particularly phenolic compounds, are associated with

human health benefits such as antioxidant, antimuta-

genic, anti-inflammatory, antimicrobial, antiviral,

anti-allergic, immunoprotective and ultraviolet (UV)

filtering properties (Dillard and German 2000; Yao

et al. 2004). The above benefits in combination with a

growing concern about synthetic pesticides make

plant secondary metabolites, when carefully selected,

highly valuable compounds for crop protection.

Strategies to identify defensive metabolites

The search for insecticidal biopesticides requires

screening of naturally occurring bioactive compounds
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in plants. Plant secondary metabolites have a wide

spectrum of activity against pest insects and are known

to affect them at cellular, tissue and organism levels.

Thus, it is of utmost importance to study the

behavioural patterns in insects to unravel the under-

lying mechanism responsible for the proclaimed

insecticidal activity. Secondary metabolites can have

direct implications on insect populations by acute

toxicity however, they may also affect population

dynamics by impairing important biological traits

through physiological and behavioural sublethal

effects such as reduced fecundity, malformations and

delayed development.

Metabolomics

Secondary plant metabolites represent a diverse group

of low-molecular mass structures which makes com-

prehensive analysis a difficult analytical challenge

(Barah and Bones 2015). Bio-assay guided fraction-

ation is a well-established platform to isolate and

characterize active constituents present in plant

extracts. However, besides the tedious and time

consuming process, another important drawback of

this approach is the potential loss of synergistic

functions of metabolites during the purification steps.

Until recently, studies of phytochemicals were mainly

restricted by methods allowing only such reductionist

approaches (Hall 2006). In the past decades, a new

field of science, known as ‘system biology’, emerged.

This holistic approach, collectively placed under the

umbrella metabolomics, stands in contrast to the

traditional reductionist approach. Metabolomics aims

to comprehensively identify and quantify metabolites

in a high-throughput, non-biased manner, rather than

focusing on a pre-determined small set of metabolites

or a specific class of chemical molecules (Kuhlisch

and Pohnert 2015).

The significant advances in a variety of analytical

platforms have enabled the detection and characteri-

zation of such chemically diverse structures. Among

them, mass spectrometry in combination with liquid

and gas chromatography, as well as nuclear magnetic

resonance spectroscopy are most widely used (Aliferis

and Chrysayi-Tokousbalides 2011). Each method has

its own advantages and limitations in terms of

sensitivity, selectivity and reproducibility however,

none of them is capable to detect all metabolites within

a given biological sample (Verpoorte et al. 2008).

Details on analytical technologies used in metabolo-

mics have been reviewed elsewhere (Weckwerth

2003; Allwood et al. 2011; Wolfender et al. 2013).

Eco-metabolomics

The last decade has seen an increasing number of

applications of metabolomics and has evoked consid-

erable interest in ecological studies including the study

of plant-herbivore interactions (Allwood et al. 2008;

Macel et al. 2010; Leiss et al. 2011; Maag et al. 2015).

Untargeted metabolomics, also known as ‘metabolic

fingerprinting’, is well-suited for the discovery of

chemical metabolic markers related to plant resis-

tance. Commonly, phenotypic screening is used by

analyzing genotypes with contrasting levels of resis-

tance (Jansen et al. 2009; Kuzina et al. 2009; Leiss

et al. 2009a, b, 2013; Mirnezhad et al. 2009; Capitani

et al. 2012). The next challenge is to make sense of the

wealth of data that has been generated during

metabolite analysis. Therefore, computational, in

conjunction with chemometric or bio-informatic tools,

are crucial to process and interpret these results in a

biological context (Worley and Powers 2013). The

majority of the eco-metabolomic approaches, how-

ever, are often correlative in nature. Ultimately, once

metabolites are structurally elucidated, their contribu-

tion to the observed resistant phenotype needs to be

demonstrated in subsequent bioassays. An example of

the latter has been provided by Leiss et al.

(2009a, 2013), who experimentally addressed the role

of several defense metabolites to support the claim of

insecticidal activity.

Insecticidal metabolites

There has been a remarkable interest in the use of

biopesticides, specifically plant-based products. This

paper presents a critical review of insecticidal

metabolites from plant origin, identifying existing

challenges as well as opportunities with regards to

their use in sustainable crop protection. A literature

search was conducted to survey secondary metabolites

for their insecticidal properties. After evaluating the

available literature over the past two decades, 47

metabolites were selected based on their insecticidal

activities. Searches were then carried out for metabo-

lites with proven health-promoting effects. The dual

activities of these compounds are highly valuable,
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both from an ecological and a pharmaceutical per-

spective. The chosen representatives discussed here

include ten metabolites belonging to the phenyl-

propanoids and flavonoids. Table 1 summarizes their

insecticidal activities on various economically impor-

tant target insects and, where known, their potential

mode of action.

Phenylpropanoids

Phenylpropanoids, are among the most common and

widespread plant secondary metabolites involved in

plant defense (Dixon et al. 2002). The biosynthesis of

phenylpropanoids originates from phenylalanine. Fol-

lowed by sequential hydroxylation and methylation

reactions of trans-cinnamic acid, several substituted

derivatives such as p-coumaric acid, caffeic acid,

ferulic acid, chlorogenic acid and sinapic acid have

frequently been implicated in plant defense against

insect herbivores, including, Hemiptera, Lepidoptera,

Orthoptera, Coleoptera, Thysanoptera and Diptera.

Phenylpropanoids often function as feeding deter-

rents and digestibility reducers (Table 1). Cell wall

modifications, mainly established by hydroxycin-

namic acid derivatives, may directly pose physical

barriers to various insect species incorporating and

cross-linking with carbohydrates (Abdel-Aal et al.

2001; Santiago et al. 2006; Leiss et al. 2013). Phenols

act as pro-oxidants (Summers and Felton 1994)

whereby their oxidative products covalently bind to

amino acids and proteins decreasing the digestibility

of dietary proteins (Felton et al. 1992). In addition, the

insecticidal activity of phenols also arises from

inhibition of vital insect gut proteases as has been

shown for caffeic, ferulic, sinapic, chlorogenic and p-

coumaric acid (Johnson 2005; Joshi et al. 2014).

Flavonoids

Flavonoids represent one of the most studied classes of

phenylpropanoid-derived metabolites and are found

ubiquitously in plants (Harborne 2001; Simmonds

2001). Structurally, flavonoids consist of several

classes such as flavones (e.g., luteolin, rutin), flavonols

(e.g., kaempferol, quercetin), flavanones (e.g., narin-

genin) and others.

Flavonoids have many complex roles in plant–

insect interactions (Simmonds 2001). A number of

flavonoids and some glycosides have been

investigated as feeding deterrents, digestibility reduc-

ers or as metabolic toxins against many insect pests

(Treutter 2006; Mierziak et al. 2014). Negative effects

of flavonoids on herbivore survival as well as perfor-

mance including growth and fecundity have been

demonstrated by artificial diet experiments or in

planta. Rutin and quercetin represent model phenolics

in the study of plant defense compounds due to their

abundant occurrence and well documented toxicity to

numerous insect herbivores. However, despite the

importance of flavonoids in plant–insect interactions,

detailed understanding of how they modulate resis-

tance at the biochemical and molecular levels remains

largely unknown (Simmonds 2003).

As with many chemicals, the dosage often deter-

mines the degree of effect it produces. Depending on

the insect species, rutin and quercetin, at varying

doses, elicited variable behavioral responses and

provoked both negative as well as stimulating effects

on herbivore feeding (Simmonds 2003; Jadhav et al.

2012; Golawska and Lukasik 2012; Diaz Napal and

Palacios 2015). Another level of complexity is posed

by the fact that defense responses to a specific

compound can often be modulated by the presence

of other compounds. For example, methanol extracts

of Lonicera maackii, dominant in the flavonoid

luteolin, deterred feeding of the generalist herbivore

Spodoptera exigua. However, when offered as indi-

vidual compound in diet plugs, no anti-herbivory

activity was observed. Instead, luteolin was margin-

ally stimulating feeding (Cipollini et al. 2008).

Onyilagha et al. (2012) provided strong evidence of

defensive synergies among different flavonoids.

While individual metabolites minimally deterred flea

beetle feeding, combined flavonoid fractions were

more effective in feeding deterrence. This highlights

the importance of complex matrices of plant extracts

in which active substituents might act additively or

synergistically.

Secondary metabolites: when poor solubility

becomes an issue

Plant secondary metabolites represent a new genera-

tion of green insecticides with potential opportunity

for commercial utility in agriculture (Adeyemi 2010;

Dayan et al. 2009). However, the majority of sec-

ondary metabolites are poorly water soluble, thus

limiting their application as crop protection agents.
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The results of our literature search indicate that 78% of

the selected insecticidal metabolites are poorly water

soluble. For products such as pharmaceuticals, effi-

cacy often depends on the effective solubility of the

active ingredient to ensure proper dispersion. Solubil-

ity, therefore, presents a key prerequisite for ensuring

successful formulation. Numerous candidates fail to

reach commercialization due to solubility problems

(Lipinski 2002). The literature on solubility issues

regarding agrochemicals is relatively scarce, however,

we can safely assume that the same dilemma exists

there. To illustrate this statement, we summarized the

aqueous solubilities of the ten representative metabo-

lites in Table 2. Discrepancies of water solubility

measurements reported in the literature may be

attributed to one or more of the following: compound

purity, particle size, analytical method employed or

time allowed for equilibrium conditions to be reached.

As such, the reported water solubilities were retrieved

from a database using ALOPGS 2.1 as a modeling

software program predicting aqueous solubility.

Descriptive terms are often used to designate

solubility and usually refer to ranges of solubility

rather than providing detailed information on true

solubilities. According to the United Stated Pharma-

copeia (USP30), the water solubility of a ‘slightly

soluble’ compound ranges from 10 mg/ml down to

1 mg/ml whereas ‘very slightly soluble’ compounds

are defined as 1 mg/ml to 100 lg/ml. In addition,

interpretation of the term ‘poorly-soluble compound’

can vary, depending on an individual’s definition.

Therefore, the term low solubility in this review is

defined as the aqueous solubility of a compound that

falls into the range of ‘slightly soluble’ and below (i.e.

\10 mg/ml). There are various methodologies avail-

able to enhance the aqueous solubility of chemical

compounds (Savjani et al. 2012). In this paper, we

discuss the potential of a recently developed green

solvent, known as NADES, to improve the solubility

of poorly soluble defensive metabolites.

Deep eutectic solvents

As with many conventional pesticides, a low aqueous

solubility often requires large amounts of organic

solvents (e.g., alcohols, chlorinated hydrocarbons,

arenes, and nitriles) to be used in agrochemical

formulations (Anjali et al. 2010). In most cases, active

ingredients of biopesticides are formulated in a similar

way (Gasic and Tanovic 2013). Considerable attention

has been directed towards the reduction or elimination

of organic solvents for safer handling (Knowles 2008;

EEA 2013). This increasing environmental conscious-

ness has led to the development of greener formula-

tions as alternatives to hazardous organic solvents.

The motivation to develop solvents that are less

harmful to the environment became more apparent

with the development of ionic liquids. Ionic liquids

(ILs) are liquids that are entirely composed of ions

with melting points lower than 100 �C (Ruß and

König 2012). For a long time ILs were hailed as green

solvents for the future. ILs, however, encounter

several drawbacks such as toxicity and low-biodegrad-

ability questioning their ‘greenness’ (Paiva et al.

2014). In the search for green alternatives, deep

eutectic solvents (DES), emerged as a promising

substitute for both ILs as well as organic solvents

(Alonso et al. 2016). The term DES was first

introduced by Abbott more than a decade ago (Abbott

et al. 2003). His pioneer work led to the discovery of

liquids with unique physicochemical properties that

were obtained by mixing two solids. A classical

example is the mixture of urea (melting point 133 �C)

with choline chloride (melting point 302 �C). Figure 1

illustrates the phase diagram of the urea-choline

chloride system. At a molar ratio of 2:1 (urea-choline

chloride) a eutectic mixture is formed at 12 �C.

Table 2 Solubility data of plant secondary metabolites in

water

Designation Secondary

metabolite

Solubility (mg/

ml)

Very slightly

soluble

Ferulic acid 0.906

Kaempferol 0.178

Luteolin 0.138

Sinapic acid 0.631

Quercetin 0.261

Slightly soluble Caffeic acid 1.61

Chlorogenic acid 3.44

t-Cinnamic acid 1.15

p-Coumaric acid 1.02

Rutin 3.54

Scopoletin 2.35

Data retrieved from ALOPGS 2.1. According to the United

Stated Pharmacopeia (USP30), the water solubility of a

‘slightly soluble’ compound ranges from 10 mg/ml down to

1 mg/ml whereas ‘very slightly soluble’ compounds are defined

as 1 mg/ml to 100 lg/ml
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As the research interests in deep eutectic solvents

grew in the past decade, many innovative applications

of DES emerged including, among others, in analyt-

ical chemistry (Karimi et al. 2015; Zheng et al. 2014)

biotechnology (de Marı́a and Maugeri 2011), extrac-

tion and separation processes (Bi et al. 2013; Dai et al.

2013), nanotechnology (Abo-Hamad et al. 2015), drug

delivery (Morrison et al. 2009; Aroso et al. 2016),

polymerization (del Monte et al. 2014) and electro-

chemistry (Nkuku and LeSuer 2007).

The field of DES is growing at a fast rate, with an

increased interest in natural and bio-renewable com-

pounds (Espino et al. 2016). Following the pioneering

work of Abbot, the concept of DES was extended to

numerous combinations of natural origin (Abbott et al.

2004; Imperato et al. 2005; Choi et al. 2011; Ruß and

König 2012). More recently, a wide range of bio-based

compounds for constructing a new class of innovative

green solvents, known as natural deep eutectic

solvents (NADESs) were discovered (Choi et al.

2011). This revolutionary class of non-toxic media

provides a novel biotechnological solution to deal with

scarcely water soluble metabolites.

Natural deep eutectic solvents

NADES are commonly based on naturally occurring

plant compounds, in particular primary metabolites. It

has been hypothesized that, in analogy to synthetic

ionic liquids, living organisms contain a third liquid

medium as an alternative to water and lipids. This

hypothesis arose from the observation that many solid

primary metabolites became liquid when mixed in a

certain ratio, suggesting that DES had long been

invented by nature itself. The occurrence of NADES,

intracellularly, helps to explain certain biochemical

processes such as the biosynthesis, storage and

transport of compounds which otherwise would be

difficult to solubilize (Choi et al. 2011). More than 100

stable combinations of NADES were designed, based

on particular molar ratios of two compounds such as

amino acids, organic acids, sugars or choline deriva-

tives (Dai et al. 2013). Water is often incorporated as a

third component and is strongly retained in the solvent

(Choi et al. 2011). Due to the generation of intramolec-

ular hydrogen bonds the resulting NADES displays a

high melting point depression causing the solids to

liquefy. This eutectic mixture, which is characterized

with a melting point temperature that is far below its

individual precursors, remains fluid at room

temperature.

NADES as designer solvents

Modifying the nature and molar ratio of the com-

pounds allows to customize these properties in order to

meet specific requirements hence, the accolade ‘de-

signer solvents’. The plethora of possible combina-

tions can therefore, be seen as a huge opportunity to

find a suitable solvent for any application (Francisco

et al. 2013). Choline chloride, an inexpensive, non-

toxic, and biodegradable quaternary ammonium salt,

is by far one of the most dominant constituents used in

the field of deep eutectic solvents. Previously known

as vitamin B4, it has some important key functions in

the human body. Choline chloride serves as building

block for membrane phospholipids and as precursor of

the neurotransmitter acetylcholine (Ueland 2011).

Among the available preparation methods, the

heating and stirring method is the most common one

for preparing eutectic solvents (Espino et al. 2016).

This easy method simply requires mechanical stirring

of solid starting materials while heating at moderate

Fig. 1 Schematic phase diagram of binary chemical mixture.

Urea (A), at the far left of the diagram has melting temperature

(TA) of 133 �C. Choline chloride (B), at the far right of the

diagram has a melting temperature (TB) of 302 �C. The liquidus

lines slope downwards the melting points of the pure

components and meet at a point known as the eutectic point

(indicated by the black dot). Deep eutectic liquids (TE) have

melting points far below any of the starting materials
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temperature until a homogenous liquid is formed.

Besides the ease of preparation, NADES offer several

other advantageous qualities as solvents such as a wide

liquid range, water compatibility, low toxicity, non-

flammability, biocompatibility and low vapor pressure

(Paiva et al. 2014).

Physicochemical properties of NADES

Being designer solvents, the physicochemical proper-

ties of NADES, e.g. melting point, density, viscosity,

acidity, and hydrophobicity, are highly tunable (Dai

et al. 2015). Solvent polarity is an important parameter

in chemistry that characterizes how a solvent interacts

with solutes. Typically, solvents can be classified into

three main categories: non-polar solvents (hydrocar-

bons), polar protic solvents (e.g. water, alcohols) and

polar aprotic solvents (e.g. DMSO, acetone). The

solvation properties of NADES cover a wide range of

polarity. Mixtures of organic acids were most polar,

followed by amino acids based NADES whereas

polyalcohol based NADES are least polar, displaying

a polarity similar to that of methanol (Dai et al. 2013).

Nonetheless, the majority of NADES are generally

hydrophilic due to their hydrogen bonding ability.

Consequently, hydrophobic eutectic mixtures based

on menthol and fatty acids have now come to the fore

(Ribeiro et al. 2015; van Osch et al. 2015). Another

important physical property is viscosity. NADES tend

to be fairly viscous when compared to traditional

organic solvents, which forms a disadvantage for

practical applications. The strong hydrogen interac-

tions, which are the key to NADES formation,

promote these high viscosities. Both properties,

polarity and viscosity, may be modulated by the

addition of water (Dai et al. 2013). The viscosity of

NADES is significantly decreased upon dilution with

water, while still maintaining its supermolecular

structure (Dai et al. 2015).

Green defense against pests

Driven by legislation and evolving societal attitudes

concerning environmental issues, the search for safe

and green products has been increasing continuously.

As a contribution to such efforts, we present an

alternative green approach which involves the use of

insecticidal crop protection agents and solvents from

plant-origin.

Green formulations: improving solubility

with NADES

Chemical formulations, especially during earlier

phases of research and development, mostly start with

the evaluation of their general suitability prior to

launching into full development (Sasson et al. 2007).

One of the most frequently asked questions that

scientist face in technical fields relating to chemical

formulation of compounds concerns the solubility of a

specific active ingredient (Battachar et al. 2006).

While at first glance the answer seems to be just a

simple number, it is one of the most critical pre-

formulation parameters that has a significant impact

on the performance of a molecule. In this paper, we

demonstrated the potential of NADES as a promising

sustainable solvent for improving the solubility of

several resistant related secondary metabolites.

NADES has several important advantages, partic-

ularly the high solubilizing capacity of both polar and

non-polar compounds. The solubility of the poorly

soluble insecticidal metabolites rutin, quercetin and

trans-cinnamic acid was significantly increased as

compared to the aqueous solubility (Dai et al.

2013, 2015). The strong hydrogen bonding between

NADES and the solutes did not only cause this huge

increase in solubility but also contributed to the

stability of secondary metabolites under various

conditions such as high temperature, light and storage

time (Dai et al. 2013).

As an extension of these studies, we have investi-

gated the solubility of six insecticidal metabolites in a

variety of NADES. The solvent selection framework

consisted of the following steps:

1. Preliminary solvent screening: a pre-selected set

of 20 NADES was used as a starting point to

identify and rank potential NADES candidates

(Table 3). Selection constraints were imposed on

important properties such as viscosity and

stability.

2. Secondary screening: solubility tests were per-

formed to determine the best solvent for each of

the metabolites. Saturated solutions, generated by

adding an excess amount of each compound to

different NADES, were kept under constant

stirring (1100 rpm) for 24 h at 50 �C. The 20

candidates were ranked in decreasing order of

solvent power.
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3. Solubility verification: For the verification of

solubilities, samples were centrifuged for 5 min at

2000 rpm and subsequently diluted suitably with

methanol for spectrophotometric analysis (UV-

1800 UV–VIS spectrophotometer, Shimadzu

Europe GmbH, Duisburg, Germany). Five

different concentrations, in the range of

3–35 lg/ml, were prepared in triplicate to con-

struct a standard curve. Corresponding solubili-

ties, analysis wavelengths, linear range and

correlation coefficient (r2) are presented in

Table 4.

Among the pre-screen solvents, lactic acid: 1,2-

propanediol in a molar ratio of 2:1 (abbreviated by

LAP 2:1) and 1,2-propanediol: choline chloride: water

in molar ratios of 1:1:1 and 1:1:3 (abbreviated PCH

1:1:1 or 1:1:3) have demonstrated considerable

improvement in solubility. Results of solubility stud-

ies indicated that, enhancements with NADES, as

compared to aqueous solubility, were more than 29,

34, 35, 95 and 195 fold in cases of chlorogenic acid,

sinapic acid, ferulic acid, luteolin and quercetin,

respectively.

A major advantage of the high solubilizing power is

that it allows a high degree of flexibility in tailoring

dosage treatments. However, an important drawback

of NADES that might constrain the applicability, is

its’ high viscosity. While modifiers such as water can

be used to reduce the high viscosity, it also signifi-

cantly affects the solubility (Dai et al. 2013). The

solubility of rutin, for example, was increased by

fivefold in PCH (1:1:3) compared to water (Tables 2,

4). For nonpolar compounds, the highest solubility is

achieved in pure NADES, whereas solutes with a

medium polarity such as rutin display a higher

solubility when diluted with 5–10% of water. Increas-

ing the water content to 25 or 50% (v/v) drastically

Table 3 Different combinations of natural deep eutectic

solvents

NADES components Molar ratio

1 1,2-propanediol: choline chloride: water 1:1:1

2 1,2-propanediol: choline chloride: water 1:1:3

3 b-Alanine: Citric Acid: water 1:1:3

4 Betaine: citric acid: water 1:1:5

5 Fructose: chloline chloride: water 1:1:3

6 Glucose: choline chloride: water 2:5:5

7 Glucose: citric acid: water 1:1:5

8 Glycerol: choline chloride: water 2:1:1

9 Lactic acid: choline chloride 1:1

10 Lactic acid: 1,2-propanediol 1:1

11 Lactic acid: 1,2-propanediol 2:1

12 Lactic acid: glucose: water 5:1:3

13 Lactic acid: b-Alanine: water 1:1:3

14 Malic acid: sorbitol: water 1:1:3

15 Malic acid: L-serine: water 1:1:3

16 Malic acid: choline chloride: water 1:1:2

17 Proline: malonic acid: water 1:1:6

18 Xylitol: choline chloride: water 1:1:2

19 Xylitol: choline chloride: water 1:2:3

20 Xylitol: citric acid: water 1:1:3

Table 4 Solubility of insecticidal metabolites (mg/g) in different natural deep eutectic solvents

Secondary

metabolitea
NADES composition Water

percentage

k max

(nm)

Linearity range

(lg/ml)

Correlation

coefficient

Solubility

(mg/g)

Sinapic acid lactic acid: 1,2-propanediol (2:1) – 325 3–12.5 0.9981 21.59 ± 0.24

Chlorogenic

acid

lactic acid: 1,2-propanediol (2:1) – 325 3–20 0.9994 100.92 ± 0.57

Luteolin 1,2-propanediol: choline

chloride: water (1:1:1)

7.71% 348 3–15 0.9941 13.08 ± 0.86

Rutin 1,2-propanediol: choline

chloride: water (1:1:3)

20.04% 359 3–35 0.9961 18.46 ± 0.67

Quercetin 1,2-propanediol: choline

chloride: water (1:1:1)

7.71% 375 3–20 0.9975 44.34 ± 0.76

Ferulic acid lactic acid: 1,2-propanediol (2:1) – 322 3–12.5 0.9901 31.92 ± 0.70

Data represented as mean ± SD, n = 3
a Luteolin was purchased from Chengdu pharmaceutical co ltd (Chengdu, China), whereas all other metabolites were obtained from

Sigma (MO, St. Louis, USA)
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reduced the solubility, which presumably is attributed

to the loss of the supermolecular structure of NADES

(Dai et al. 2013) and provides an explanation of the

less pronounced enhancement of rutin in PCH (1:1:3).

Interestingly, the insecticidal metabolites trans-cin-

namic acid, caffeic acid and p-coumaric acid can also

be included as hydrogen bond donors for the formation

of NADES (Maugeri and de Marı́a 2012).

Concluding remarks: the way forward

for sustainable agriculture

The pest control industry is constantly searching for

innovative approaches that advance the way we

manage pest insects. This emerging need has created

a significant market opportunity for alternative and

bioactive products such as plant derived metabolites.

The interest in phytochemicals extends beyond their

natural function as defensive weapons against insect

attack as many appear to provide numerous desirable

health benefits. Central to the control of pest insects is

the question of how these green substituents can be

formulated and promulgated. The current review,

therefore, presents a simplified guide from plants to

practice. This approach comprises the following three

essential elements: (1) a robust, reliable and quanti-

tative eco-metabolic approach to screen for bioactive

metabolites, (2) a rigorous validation process to study

and verify the insecticidal activity, and (3) a strategy

for improving the solubility of sparingly soluble

compounds.

With increasing pressures on product performance,

formulation is a key technology for agrochemical

companies to differentiate their products and add

significant value. As such, NADES are introduced as

environmentally benign solvents presenting a promis-

ing solution to enhance the solubilizing properties of

poorly-soluble insecticidal metabolites.

Drug delivery systems based on eutectic mixtures

have been described to increase drug bioavailability

(Aroso et al. 2015, 2016). As for the implementation of

these green alternatives, efforts should be made in

evaluating NADES as a solvent carrier system for the

delivery of these insecticidal compounds. The appli-

cation of insecticidal plant secondary metabolites as a

pre-sowing treatment for seeds (e.g., coating) and

cuttings (e.g., dipping) presents a promising approach

to protect plants from their most vulnerable stage

onwards. Rather than shying away from unknown

challenges presented by new technologies, we should

take the opportunity to use and develop them to

improve pest control strategies. Those concerned with

developing sustainable crop protection agents are

therefore, highly encouraged to assess the applicabil-

ity of these plant-derived alternatives.

Acknowledgements This review is part of a project funded by

Technology Foundation STW, project 13553.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unre-

stricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made.

References

Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V

(2003) Novel solvent properties of cholinechloride/urea

mixtures. Chem Commun (Camb) 1:70–71

Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK

(2004) Deep eutectic solvents formed between choline

chloride and carboxylic acids: versatile alternatives to ionic

liquids. J Am Chem Soc 126:9142–9147

Abdel-Aal ES, Hucl P, Sosulski FW, Graf R, Gillott C, Pietrzak

L (2001) Screening spring wheat for midge resistance in

relation to ferulic acid content. J Agric Food Chem

49:3559–3566

Abo-Hamad A, Hayyan M, AlSaadi MA, Hashim MA (2015)

Potential applications of deep eutectic solvents in nan-

otechnology. Chem Eng J 273:551–567

Adeyemi MH (2010) The potential of secondary metabolites in

plant material as deterents against insect pests: a review.

Afr J Pure Appl Chem 4:243–246

Adfa M, Yoshimura T, Komura K, Koketsu M (2010) Antiter-

mite activities of coumarin derivatives and scopoletin from

Protium javanicum Burm. f. J Chem Ecol 36:720–726

Aliferis KA, Chrysayi-Tokousbalides M (2011) Metabolomics

in pesticide research and development: review and future

perspectives. Metabolomics 7:35–53

Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic tech-

nologies and their application to the study of plants and

plant-host interactions. Physiol Plant 132:117–135

Allwood JW, de Vos RC, Moing A, Deborde C, Erban A, Kopk

J, Goodacre R, Hall RD (2011) Plant metabolomics and its

potential for systems biology research: background con-

cepts, technology, and methodology. In: Abelson JN,

Simon MI (eds) Methods in enzymology, vol 500. Elsevier-

Academic Press, Amsterdam, pp 299–336

Alonso DA, Baeza A, Chinchilla Guillena G, Pastor IM, Ramón

DJ (2016) Deep eutectic solvents: the organic reaction

medium of the century. Eur J Org Chem 2016:612–632

Phytochem Rev

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Anjali CH, Khan SS, Margulis-Goshen K, Magdassi S,

Mukherjee A, Chandrasekaran N (2010) Formulation of

water-dispersible nanopermethrin for larvicidal applica-

tions. Ecotoxicol Environ Saf 73:1932–1936

Aroso IM, Craveiro R, Rocha Â, Dionı́sio M, Dionı́sio M,
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