139 research outputs found

    Phase measurement device using inphase and quadrature components for phase estimation

    Get PDF
    A phasemeter for estimating the phase of a signal. For multi-tone signals, multiple phase estimates may be provided. An embodiment includes components operating in the digital domain, where a sampled input signal is multiplied by cosine and sine terms to provide estimates of the inphase and quadrature components. The quadrature component provides an error signal that is provided to a feedback loop, the feedback loop providing a model phase that tends to track the phase of a tone in the input signal. The cosine and sine terms are generated from the model phase. The inphase and quadrature components are used to form a residual phase, which is added to the model phase to provide an estimate of the phase of the input signal. Other embodiments are described and claimed

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    Feedhorn-coupled TES polarimeter camera modules at 150 GHz for CMB polarization measurements with SPTpol

    Full text link
    The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz. Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking for faint polarization signals in the Cosmic Microwave Background (CMB). The camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at 90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at 150 GHz. We present the design, dark characterization, and in-lab optical properties of the 150 GHz camera modules. The modules consist of photolithographed arrays of TES polarimeters coupled to silicon platelet arrays of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In addition to mounting hardware and RF shielding, each module also contains a set of passive readout electronics for digital frequency-domain multiplexing. A single module, therefore, is fully functional as a miniature focal plane and can be tested independently. Across the modules tested before deployment, the detectors average a critical temperature of 478 mK, normal resistance R_N of 1.2 Ohm, unloaded saturation power of 22.5 pW, (detector-only) optical efficiency of ~ 90%, and have electrothermal time constants < 1 ms in transition.Comment: 15 pages, 11 figure

    Laparoscopic fistula excision and omentoplasty for high rectovaginal fistulas: a prospective study of 40 patients

    Get PDF
    AIM: The aim of this study is to prospectively evaluate 40 patients with a high rectovaginal fistula treated by a laparoscopic fistula division and closure, followed by an omentoplasty. PATIENTS AND METHODS: Forty patients with a rectovaginal fistula, between the middle third of the rectum and the posterior vaginal fornix, resulting from different causes (IBD, iatrogenic and birth trauma) were treated by a laparoscopic excision of the fistula and insertion of an omentoplasty in the rectovaginal septum. The patients completed the gastrointestinal quality of life index questionnaire (GIQLI) and the Cleveland Clinic incontinence score (CCIS). All tests were performed at regular intervals after treatment. RESULTS: In 38 (95%) patients with a median age of 53 years (range 33-72), the surgical procedure was feasible. In two patients, the fistula was closed without an omentoplasty, and a diverting stoma was performed. The median follow-up was 28 months (range 10-35). Two patients (5%) developed a recurrent fistula. In one patient, the interposed omentum became necrotic and was successfully treated laparoscopically. In another patient, an abscess developed, which needed drainage procedures. The mean CCIS was 9 (range 7-10) before treatment and 10 (range 7-13) after treatment (p = 0.5 Wilcoxon). The median GIQLI score was 85 (range 34-129) before treatment and 120 (range75-142) after treatment (p = 0.0001, Wilcoxon). CONCLUSIONS: Laparoscopic fistula excision combined with omentoplasty is a good treatment modality with a high healing rate for high rectovaginal fistulas and an acceptable complication rate

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities

    OpenET : filling a critical data gap in water management for the western United States.

    Get PDF
    The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data-driven irrigation management strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field-scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community-driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well-established satellite-based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web-based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite-driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET
    corecore