27 research outputs found

    Fluid Restriction Dehydration Increase Core Temperature During Endurance Exercise Compared to Exercise Induced Dehydration

    Get PDF
    International Journal of Exercise Science 15(2): 166-176, 2022. This study aimed to evaluate the difference in heart rate and core temperature during aerobic exercise between two forms of dehydration: exercise-induced (EI) and fluid restricted (FR). Twenty-two subjects (N = 22; 83.35 ± 13.92 kg) completed the current study, performing a familiarization session, a pre-experimental exercise session, and two exercise testing sessions. The EI exercise trial (81.52 ± 13.72 kg) was conducted after performing exercise in a hot environment to lose three to four percent of body weight and partial rehydration. The FR exercise trial (81.53 ± 14.14 kg) was completed after 12 hours of fluid restriction. During both exercise sessions, subjects pedaled against a set resistance of 130 watts for 30 minutes. The main effect of hydration on Tc was significant, F(1, 18) = 4.474, p = .049, ηp2 = .199 (Figure 2) with core temperature being greater during the FR trial compared to the EI trial (FR = 37.58 ± .06°C vs. EI = 37.31 ± .11°C). No significant interaction was found between hydration and time for HR, F(2, 42) = 0.120, p = .887, ηp2 = .006. The main effect of time on HR was significant, F(2, 42) = 119.664, p \u3c .001, ηp2 = .851. Fluid restriction was associated with an increase in core temperature. An increased core temperature may negatively influence performance, and care should be taken to ensure proper hydration

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Somatic Genomic Landscape of Glioblastoma

    Get PDF
    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
    corecore