96 research outputs found

    Acacia saligna (Labill.) H. Wendl in the Sesimbra county: invaded habitats and potential distribution modeling

    Get PDF
    The aim of this study is to establish the spatial pattern of colonization and spread of Acacia saligna by predictive modeling, susceptibility evaluation and to perform a cost-effective analysis in two sites of community importance (Fernão Ferro/Lagoa de Albufeira and Arrábida/Espichel) in the Sesimbra County. The main goal is to increase the knowledge on the invasive process and the potential distribution of the Acacia saligna in Sesimbra County, namely in the Natura 2000 sites. The Artificial Neural Networks model was developed in Open Modeller to predict the potential of occurrence of A. saligna, and is assumed to be conditioned by a set of limiting factors that may be known or modeled. The base information includes a dependent variable (present distribution of specie) and several variables considered as conditioning factors (topographic variables, land use, soils characteristics, river and road distance), organized in a Geographical Information System (GIS) database. This is used to perform spatial analysis, which is focused on the relationships between the presence or absence of the specie and the values of the conditioning factors. The results show a high correspondence between higher values of potential of occurrence and soils characteristics and distance to rivers; these factors seem to benefit the specie’ invasion process. According to the conservation value of each cartographic unit, related to natural habitats included in Habitats Directive (92/43/EEC), the coastal habitats (2130, 2250 and 2230) were the most susceptible to invasion by A. saligna. The predicted A. saligna distribution allows for a more efficient concentration and application of resources (human and financial) in the most susceptible areas to invasion, such as the local and national Protected Areas and the Sites of Community Importance, and is useful to test hypotheses about the specie range characteristics, habitats preferences and habitat partitioning

    Vancomycin-Loaded, Nanohydroxyapatite-Based Scaffold for Osteomyelitis Treatment: In Vivo Rabbit Toxicological Tests and In Vivo Efficacy Tests in a Sheep Model

    Get PDF
    The treatment for osteomyelitis consists of surgical debridement, filling of the dead space, soft tissue coverage, and intravenous administration of antimicrobial (AM) agents for long periods. Biomaterials for local delivery of AM agents, while providing controllable antibiotic release rates and simultaneously acting as a bone scaffold, may be a valuable alternative; thus, avoiding systemic AM side effects. V-HEPHAPC is a heparinized nanohydroxyapatite (nHA)/collagen biocomposite loaded with vancomycin that has been previously studied and tested in vitro. It enables a vancomycin-releasing profile with an intense initial burst, followed by a sustained release with concentrations above the Minimum Inhibitory Concentration (MIC) for MRSA. In vitro results have also shown that cellular viability is not compromised, suggesting that V-HEPHAPC granules may be a promising alternative device for the treatment of osteomyelitis. In the present study, V-HEPHAPC (HEPHAPC with vancomycin) granules were used as a vancomycin carrier to treat MRSA osteomyelitis. First, in vivo Good Laboratory Practice (GLP) toxicological tests were performed in a rabbit model, assuring that HEPHAPC and V-HEPHAPC have no relevant side effects. Second, V-HEPHAPC proved to be an efficient drug carrier and bone substitute to control MRSA infection and simultaneously reconstruct the bone cavity in a sheep model.This work was financed by FEDER-Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020-Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020; by Portuguese funds through FCT/MCTES in the framework of the project institute for Research and Innovation in Health Sciences (POCI-01-0145-FEDER-007274); by the Project Biotherapies (NORTE-01-0145-FEDER-000012); and by the project HEPHAPC Program RESOLVE, Norte 2020 (NORTE-01-0246-FEDER-000018). The authors would also like to acknowledge the technical support for histology and histochemical studies of Rui Fernandes and Rossana Correia and all the staff from HEMS/i3S, as well as the support of all the staff and students at the Hospital Veterinario-Universidade de Evora

    Vancomycin-Loaded, Nanohydroxyapatite-Based Scaffold for Osteomyelitis Treatment: In Vivo Rabbit Toxicological Tests and In Vivo Efficacy Tests in a Sheep Model

    Get PDF
    The treatment for osteomyelitis consists of surgical debridement, filling of the dead space, soft tissue coverage, and intravenous administration of antimicrobial (AM) agents for long periods. Biomaterials for local delivery of AM agents, while providing controllable antibiotic release rates and simultaneously acting as a bone scaffold, may be a valuable alternative; thus, avoiding systemic AM side effects. V-HEPHAPC is a heparinized nanohydroxyapatite (nHA)/collagen biocomposite loaded with vancomycin that has been previously studied and tested in vitro. It enables a vancomycin-releasing profile with an intense initial burst, followed by a sustained release with concentrations above the Minimum Inhibitory Concentration (MIC) for MRSA. In vitro results have also shown that cellular viability is not compromised, suggesting that V-HEPHAPC granules may be a promising alternative device for the treatment of osteomyelitis. In the present study, V-HEPHAPC (HEPHAPC with vancomycin) granules were used as a vancomycin carrier to treat MRSA osteomyelitis. First, in vivo Good Laboratory Practice (GLP) toxicological tests were performed in a rabbit model, assuring that HEPHAPC and V-HEPHAPC have no relevant side effects. Second, V-HEPHAPC proved to be an efficient drug carrier and bone substitute to control MRSA infection and simultaneously reconstruct the bone cavity in a sheep model

    Southern Brazilian native fruit shows neurochemical, metabolic and behavioral benefits in an animal model of metabolic syndrome.

    Get PDF
    Made available in DSpace on 2018-08-29T01:23:22Z (GMT). No. of bitstreams: 1 MarciaVizzottoOliveira2018ArticleSouthernBrazilian.pdf: 975423 bytes, checksum: 33f277d2694e331daaec60f37fb6542b (MD5) Previous issue date: 2018-08-28bitstream/item/182027/1/Marcia-Vizzotto-Oliveira2018-Article-SouthernBrazilian.pd

    Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism.

    Full text link
    In Chlamydomonas, unlike in flowering plants, genes coding for Nd7 (NAD7/49kDa) and Nd9 (NAD9/30kDa) core subunits of mitochondrial respiratory-chain complex I are nucleus-encoded. Both genes possess all the features that facilitate their expression and proper import of the polypeptides in mitochondria. By inactivating their expression by RNA interference or insertional mutagenesis, we show that both subunits are required for complex I assembly and activity. Inactivation of complex I impairs the cell growth rate, reduces the respiratory rate, leads to lower intracellular ROS production and lower expression of ROS scavenging enzymes, and is associated to a diminished capacity to concentrate CO2 without compromising photosynthetic capacity.Peer reviewe

    Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism.

    Get PDF
    In Chlamydomonas, unlike in flowering plants, genes coding for Nd7 (NAD7/49kDa) and Nd9 (NAD9/30kDa) core subunits of mitochondrial respiratory-chain complex I are nucleus-encoded. Both genes possess all the features that facilitate their expression and proper import of the polypeptides in mitochondria. By inactivating their expression by RNA interference or insertional mutagenesis, we show that both subunits are required for complex I assembly and activity. Inactivation of complex I impairs the cell growth rate, reduces the respiratory rate, leads to lower intracellular ROS production and lower expression of ROS scavenging enzymes, and is associated to a diminished capacity to concentrate CO2 without compromising photosynthetic capacity.Peer reviewe

    Therapeutic effects of hMAPC and hMSC transplantation after stroke in mice

    Get PDF
    Stroke represents an attractive target for stem cell therapy. Although different types of cells have been employed in animal models, a direct comparison between cell sources has not been performed. The aim of our study was to assess the effect of human multipotent adult progenitor cells (hMAPCs) and human mesenchymal stem cells (hMSCs) on endogenous neurogenesis, angiogenesis and inflammation following stroke. BALB/Ca-RAG 2(-/-) γC(-/-) mice subjected to FeCl(3) thrombosis mediated stroke were intracranially injected with 2 × 10(5) hMAPCs or hMSCs 2 days after stroke and followed for up to 28 days. We could not detect long-term engraftment of either cell population. However, in comparison with PBS-treated animals, hMSC and hMAPC grafted animals demonstrated significantly decreased loss of brain tissue. This was associated with increased angiogenesis, diminished inflammation and a glial-scar inhibitory effect. Moreover, enhanced proliferation of cells in the subventricular zone (SVZ) and survival of newly generated neuroblasts was observed. Interestingly, these neuroprotective effects were more pronounced in the group of animals treated with hMAPCs in comparison with hMSCs. Our results establish cell therapy with hMAPCs and hMSCs as a promising strategy for the treatment of strok

    Adenosine A2A receptor as a potential regulator of Mycobacterium leprae survival mechanisms: new insights into leprosy neural damage

    Get PDF
    BackgroundLeprosy is a chronic infectious disease caused by Mycobacterium leprae, which can lead to a disabling neurodegenerative condition. M. leprae preferentially infects skin macrophages and Schwann cells–glial cells of the peripheral nervous system. The infection modifies the host cell lipid metabolism, subverting it in favor of the formation of cholesterol-rich lipid droplets (LD) that are essential for bacterial survival. Although researchers have made progress in understanding leprosy pathogenesis, many aspects of the molecular and cellular mechanisms of host–pathogen interaction still require clarification. The purinergic system utilizes extracellular ATP and adenosine as critical signaling molecules and plays several roles in pathophysiological processes. Furthermore, nucleoside surface receptors such as the adenosine receptor A2AR involved in neuroimmune response, lipid metabolism, and neuron–glia interaction are targets for the treatment of different diseases. Despite the importance of this system, nothing has been described about its role in leprosy, particularly adenosinergic signaling (AdoS) during M. leprae–Schwann cell interaction.MethodsM. leprae was purified from the hind footpad of athymic nu/nu mice. ST88-14 human cells were infected with M. leprae in the presence or absence of specific agonists or antagonists of AdoS. Enzymatic activity assays, fluorescence microscopy, Western blotting, and RT-qPCR analysis were performed. M. leprae viability was investigated by RT-qPCR, and cytokines were evaluated by enzyme-linked immunosorbent assay.ResultsWe demonstrated that M. leprae-infected Schwann cells upregulated CD73 and ADA and downregulated A2AR expression and the phosphorylation of the transcription factor CREB (p-CREB). On the other hand, activation of A2AR with its selective agonist, CGS21680, resulted in: 1) reduced lipid droplets accumulation and pro-lipogenic gene expression; 2) reduced production of IL-6 and IL-8; 3) reduced intracellular M. leprae viability; 4) increased levels of p-CREB.ConclusionThese findings suggest the involvement of the AdoS in leprosy neuropathogenesis and support the idea that M. leprae, by downmodulating the expression and activity of A2AR in Schwann cells, decreases A2AR downstream signaling, contributing to the maintenance of LD accumulation and intracellular viability of the bacillus
    • …
    corecore