151 research outputs found
Subtle pH variation around pH 4.0 affects aggregation kinetics and aggregate characteristics of recombinant human insulin
Insulin is a biotherapeutic protein, which, depending on environmental conditions such as pH, has been shown to form a large variety of aggregates with different structures and morphologies. This work focuses on the formation and characteristics of insulin particulates, dense spherical aggregates having diameters spanning from nanometre to low-micron size. An in-depth investigation of the system is obtained by applying a broad range of techniques for particle sizing and characterisation. An interesting observation was achieved regarding the formation kinetics and aggregate characteristics of the particulates; a subtle change in the pH from pH 4.1 to pH 4.3 markedly affected the kinetics of the particulate formation and led to different particulate sizes, either nanosized or micronsized particles. Also, a clear difference between the secondary structure of the protein particulates formed at the two pH values was observed, where the nanosized particulates had an increased content of aggregated β-structure compared to the micronsized particles. The remaining characteristics of the particles were identical for the two particulate populations. These observations highlight the importance of carefully studying the formulation design space and of knowing the impact of parameters such as pH on the aggregation to secure a drug product in control. Furthermore, the identification of particles only varying in few parameters, such as size, are considered highly valuable for studying the effect of particle features on the immunogenicity potential.Drug Delivery Technolog
NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol
The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations
Non-Conjugated Small Molecule FRET for Differentiating Monomers from Higher Molecular Weight Amyloid Beta Species
Background:
Systematic differentiation of amyloid (Aβ) species could be important for diagnosis of Alzheimer's disease (AD). In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW) would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. Principal Findings:
We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer) technique that utilized amyloid beta (Aβ) species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. Significance:
We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.National Institute on Aging (K25AG036760
Analyzing Thioflavin T Binding to Amyloid Fibrils by an Equilibrium Microdialysis-Based Technique
A new approach for the determination of the amyloid fibril – thioflavin T (ThT) binding parameters (the number of binding modes, stoichiometry, and binding constants of each mode) is proposed. This approach is based on the absorption spectroscopy determination of the concentration of free and bound to fibril dye in solutions, which are prepared by equilibrium microdialysis. Furthermore, the proposed approach allowed us, for the first time, to determine the absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to fibril by each binding modes. This approach is universal and can be used for determining the binding parameters of any dye interaction with a receptor, such as ANS binding to proteins in the molten globule state or to protein amorphous aggregates
Thioflavine-T and Congo Red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy.
International audienceAmyloid fibrils are protein misfolding structures that involve a β-sheet structure and are associated with the pathologies of various neurodegenerative diseases. Here we show that Thioflavine-T and Congo Red, two major dyes used to image fibrils by fluorescence assays, can provide deep structural information when probed by means of polarization-resolved fluorescence microscopy. Unlike fluorescence anisotropy or fluorescence detected linear dichroism imaging, this technique allows to retrieve simultaneously both mean orientation and orientation dispersion of the dye, used here as a reporter of the fibril structure. We have observed that insulin amyloid fibrils exhibit a homogeneous behavior over the fibrils' length, confirming their structural uniformity. In addition, these results reveal the existence of various structures among the observed fibrils' population, in spite of a similar aspect when imaged with conventional fluorescence microscopy. This optical nondestructive technique opens perspectives for in vivo structural analyses or high throughput screening
Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of α-synuclein.
The deposition of fibrillar structures (amyloids) is characteristic of pathological conditions including Alzheimer's and Parkinson's diseases. The detection of protein deposits and the evaluation of their kinetics of aggregation are generally based on fluorescent probes such as thioflavin T and Congo red. In a search for improved fluorescence tools for studying amyloid formation, we explored the ability of N-arylaminonaphthalene sulfonate (NAS) derivatives to act as noncovalent probes of α-synuclein (AS) fibrillation, a process linked to Parkinson's disease and other neurodegenerative disorders. The compounds bound to fibrillar AS with micromolar K(d)s, and exhibited fluorescence enhancement, hyperchromism, and high anisotropy. We conclude that the probes experience a hydrophobic environment and/or restricted motion in a polar region. Time- and spectrally resolved emission intensity and anisotropy provided further information regarding structural features of the protein and the dynamics of solvent relaxation. The steady-state and time-resolved parameters changed during the course of aggregation. Compared with thioflavin T, NAS derivatives constitute more sensitive and versatile probes for AS aggregation, and in the case of bis-NAS detect oligomeric as well as fibrillar species. They can function in convenient, continuous assays, thereby providing useful tools for studying the mechanisms of amyloid formation and for high-throughput screening of factors inhibiting and/or reversing protein aggregation in neurodegenerative diseases
Natriuretic peptide vs. clinical information for diagnosis of left ventricular systolic dysfunction in primary care
<p>Abstract</p> <p>Background</p> <p>Screening of primary care patients at risk for left ventricular systolic dysfunction by a simple blood-test might reduce referral rates for echocardiography. Whether or not natriuretic peptide testing is a useful and cost-effective diagnostic instrument in primary care settings, however, is still a matter of debate.</p> <p>Methods</p> <p>N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, clinical information, and echocardiographic data of left ventricular systolic function were collected in 542 family practice patients with at least one cardiovascular risk factor. We determined the diagnostic power of the NT-proBNP assessment in ruling out left ventricular systolic dysfunction and compared it to a risk score derived from a logistic regression model of easily acquired clinical information.</p> <p>Results</p> <p>23 of 542 patients showed left ventricular systolic dysfunction. Both NT-proBNP and the clinical risk score consisting of dyspnea at exertion and ankle swelling, coronary artery disease and diuretic treatment showed excellent diagnostic power for ruling out left ventricular systolic dysfunction. AUC of NT-proBNP was 0.83 (95% CI, 0.75 to 0.92) with a sensitivity of 0.91 (95% CI, 0.71 to 0.98) and a specificity of 0.46 (95% CI, 0.41 to 0.50). AUC of the clinical risk score was 0.85 (95% CI, 0.79 to 0.91) with a sensitivity of 0.91 (95% CI, 0.71 to 0.98) and a specificity of 0.64 (95% CI, 0.59 to 0.67). 148 misclassifications using NT-proBNP and 55 using the clinical risk score revealed a significant difference (McNemar test; p < 0.001) that was based on the higher specificity of the clinical risk score.</p> <p>Conclusion</p> <p>The evaluation of clinical information is at least as effective as NT-proBNP testing in ruling out left ventricular systolic dysfunction in family practice patients at risk. If these results are confirmed in larger cohorts and in different samples, family physicians should be encouraged to rely on the diagnostic power of the clinical information from their patients.</p
Fluorescence Quantum Yield of Thioflavin T in Rigid Isotropic Solution and Incorporated into the Amyloid Fibrils
In this work, the fluorescence of thioflavin T (ThT) was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0). The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils
Disulfide Bridges Remain Intact while Native Insulin Converts into Amyloid Fibrils
Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin
- …