9 research outputs found

    Measuring and Modeling Flow Rates in Tidal Creeks: A Case Study from the Central Coast of South Carolina

    Get PDF
    The purpose of this study was to collect site- and condition-specific hydrology data to better understand the water flow dynamics of tidal creeks and terrestrial runoff from surrounding watersheds. In this paper, we developed mathematical models of tidal creek flow (discharge) in relation to time during a tidal cycle and also estimated terrestrial runoff volume from design storms to compare to tidal creek volumes. Currently, limited data are available about how discharge in tidal creeks behaves as a function of stage or the time of tide (i.e., rising or falling tide) for estuaries in the southeastern United States, so this information fills an existing knowledge gap. Ultimately, findings from this study will be used to inform managers about numeric nutrient criteria (nitrogen-N and phosphorus-P) when it is combined with biological response (e.g., phytoplankton assemblages) data from a concurrent study. We studied four tidal creek sites, two in the Ashepoo-Combahee-Edisto (ACE) Basin and two in the Charleston Harbor system. We used ArcGIS to delineate two different watersheds for each study site, to classify the surrounding land cover using the NOAA Coastal Change Analysis Program (C-CAP) data, and to analyze the soils using the NRCS Soil Survey Geographic database (SSURGO). The size of the U.S. Geological Survey’s Elevation Derivatives for National Application (EDNA) watersheds varied from 778 to 2,582 ha; smaller geographic watersheds were delineated for all sites (except Wimbee) for stormwater modeling purposes. The two sites in Charleston Harbor were within the first-order Horlbeck Creek and the second-order Bulls Creek areas. The ACE Basin sites were within the third-order Big Bay Creek and the fourth-order Wimbee Creek areas. We measured the stage and discharge in each creek with an acoustic Doppler current profiler (ADCP) unit for multiple tide conditions over a 2-year period (2015–2016) with the goal of encompassing as large of a range of tide stage and discharge data measurements as possible. The Stormwater Runoff Modeling System (SWARM) was also used to estimate the potential water entering the creeks from the land surface; this volume was very small relative to the tide water volume except for the more-developed Bulls Creek watershed. The results show that the peak discharge occurred on the ebb tide and that the duration of the flood tide spanned a longer period of time; both of these observations are consistent with traits associated with an ebb-dominated tidal creek system. The tidal inflow and outflow (flood and ebb tides, respectively) showed an asymmetrical pattern with respect to stage and discharge; peak discharge during the flood (rising) tide occurred at a higher stage than for the peak discharge during the ebb (falling) tide. This is not an unexpected result, as the water on an ebb tide is moving down gradient funneled through the creek channel toward the coast. Furthermore, water moving with the rising flood tide must overcome frictional losses due to the marsh bank and vegetation; i.e., the peak discharge can only happen when the water has risen above these impediments. We infer from the flow dynamics data that faster water velocities during ebb tide imply that more erosive energy could transport a larger mass of suspended solids and associated nutrients (e.g., orthophosphate) from the estuary to the coastal ocean. However, the discharge and runoff modeling indicate that land-based flux was important in the developed Bulls Creek watershed, but not at the larger and less-developed Big Bay Creek watershed. At Big Bay Creek, the relatively large tidal discharge volume compared to the smaller potential runoff generated within the watershed indicates that the creek could potentially dilute terrestrial runoff contaminants. Smaller, more-urbanized tidal wetland systems may not benefit from such dilution effects and thus are vulnerable to increased runoff from adjacent developed landscapes

    Field applications of the second-generation Environmental Sample Processor (ESP) for remote detection of harmful algae: 2006-2007

    Get PDF
    We assess the application of the second-generation Environmental Sample Processor (ESP) for the detection of harmful algal bloom (HAB) species in field and laboratory settings using two molecular probe techniques: a sandwich hybridization assay (SHA) and fluorescent in situ hybridization (FISH). During spring 2006, the first time this new instrument was deployed, the ESP successfully automated application of DNA probe arrays for various HAB species and other planktonic taxa, but non-specific background binding on the SHA probe array support made results interpretation problematic. Following 2006, the DNA array support membrane that we were using was replaced with a different membrane, and the SHA chemistry was adjusted. The sensitivity and dynamic range of these modifications were assessed using 96-well plate and ESP array SHA formats for several HAB species found commonly in Monterey Bay over a range of concentrations; responses were significantly correlated (p < 0.01). Modified arrays were deployed in 2007. Compared to 2006, probe arrays showed improved signal:noise, and remote detection of various HAB species was demonstrated. We confirmed that the ESP and affiliated assays can detect HAB populations at levels below those posing human health concerns, and results can be related to prevailing environmental conditions in near real-time

    The development, design, testing, refinement, simulation and application of an evaluation framework for communities of practice and social-professional networks

    Get PDF
    Background. Communities of practice and social-professional networks are generally considered to enhance workplace experience and enable organizational success. However, despite the remarkable growth in interest in the role of collaborating structures in a range of industries, there is a paucity of empirical research to support this view. Nor is there a convincing model for their systematic evaluation, despite the significant potential benefits in answering the core question: how well do groups of professionals work together and how could they be organised to work together more effectively? This research project will produce a rigorous evaluation methodology and deliver supporting tools for the benefit of researchers, policymakers, practitioners and consumers within the health system and other sectors. Given the prevalence and importance of communities of practice and social networks, and the extent of investments in them, this project represents a scientific innovation of national and international significance. Methods and design. Working in four conceptual phases the project will employ a combination of qualitative and quantitative methods to develop, design, field-test, refine and finalise an evaluation framework. Once available the framework will be used to evaluate simulated, and then later existing, health care communities of practice and social-professional networks to assess their effectiveness in achieving desired outcomes. Peak stakeholder groups have agreed to involve a wide range of members and participant organisations, and will facilitate access to various policy, managerial and clinical networks. Discussion. Given its scope and size, the project represents a valuable opportunity to achieve breakthroughs at two levels; firstly, by introducing novel and innovative aims and methods into the social research process and, secondly, through the resulting evaluation framework and tools. We anticipate valuable outcomes in the improved understanding of organisational performance and delivery of care. The project's wider appeal lies in transferring this understanding to other health jurisdictions and to other industries and sectors, both nationally and internationally. This means not merely publishing the results, but contextually interpreting them, and translating them to advance the knowledge base and enable widespread institutional and organisational application

    The Influence of Nutrient Loading on Seasonal Phytoplankton Community Variability in a Temperate Estuary: Case Study of the Ashepoo-Combahee-Edisto

    No full text
    2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur

    Assessing Biological Responses to Nitrogen and Phosphorus Levels Across the South Carolina Coastal Zone

    Get PDF
    2012 S.C. Water Resources Conference - Exploring Opportunities for Collaborative Water Research, Policy and Managemen
    corecore