366 research outputs found
Phage Lytic Enzyme Cpl-1 for Antibacterial Therapy in Experimental Pneumococcal Meningitis
Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningiti
Anomalous transport in Charney-Hasegawa-Mima flows
Transport properties of particles evolving in a system governed by the
Charney-Hasegawa-Mima equation are investigated. Transport is found to be
anomalous with a non linear evolution of the second moments with time. The
origin of this anomaly is traced back to the presence of chaotic jets within
the flow. All characteristic transport exponents have a similar value around
, which is also the one found for simple point vortex flows in the
literature, indicating some kind of universality. Moreover the law
linking the trapping time exponent within jets to the transport
exponent is confirmed and an accumulation towards zero of the spectrum of
finite time Lyapunov exponent is observed. The localization of a jet is
performed, and its structure is analyzed. It is clearly shown that despite a
regular coarse grained picture of the jet, motion within the jet appears as
chaotic but chaos is bounded on successive small scales.Comment: revised versio
The FAOSTAT database of greenhouse gas emissions from agriculture
Peer reviewedPublisher PD
Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology
Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity.</p
Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis
Treatment of bacterial meningitis caused by Streptococcus pneumoniae is increasingly difficult, because of emerging resistance to antibiotics. Recombinant Cpl-1, a phage lysin specific for S. pneumoniae, was evaluated for antimicrobial therapy in experimental pneumococcal meningitis using infant Wistar rats. A single intracisternal injection (20 mg/kg) of Cpl-1 resulted in a rapid (within 30 min) decrease in pneumococci in cerebrospinal fluid (CSF) by 3 orders of magnitude lasting for 2 h. Intraperitoneal administration of Cpl-1 (200 mg/kg) led to an antibacterial effect in CSF of 2 orders of magnitude for 3 h. Cpl-1 may hold promise as an alternative treatment option in pneumococcal meningitis
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
The interaction of static Resonant Magnetic Perturbations (RMPs) with
the plasma flows is modeled in toroidal geometry, using the non-linear
resistive MHD code JOREK, which includes the X-point and the
scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical
poloidal friction and a source of toroidal rotation are introduced in
the model to describe realistic plasma flows. RMP penetration is studied
taking self-consistently into account the effects of these flows and the
radial electric field evolution. JET-like, MAST, and ITER parameters are
used in modeling. For JET-like parameters, three regimes of plasma
response are found depending on the plasma resistivity and the
diamagnetic rotation: at high resistivity and slow rotation, the islands
generated by the RMPs at the edge resonant surfaces rotate in the ion
diamagnetic direction and their size oscillates. At faster rotation, the
generated islands are static and are more screened by the plasma. An
intermediate regime with static islands which slightly oscillate is
found at lower resistivity. In ITER simulations, the RMPs generate
static islands, which forms an ergodic layer at the very edge (ψ
≥0.96) characterized by lobe structures near the X-point and results
in a small strike point splitting on the divertor targets. In MAST
Double Null Divertor geometry, lobes are also found near the X-point and
the 3D-deformation of the density and temperature profiles is observed
Synergetic effects of collisions, turbulence and sawtooth crashes on impurity transport
This paper investigates the interplay of neoclassical, turbulent and MHD processes, which are simultaneously at play when contributing to impurity transport. It is shown that these contributions are not additive, as assumed sometimes. The interaction between turbulence and neoclassical effects leads to less effective thermal screening, i.e. lowers the outward flux due to temperature gradient. This behavior is attributed to poloidal asymmetries of the flow driven by turbulence. Moreover sawtooth crashes play an important role to determine fluxes across the q = 1 surface. It is found that the density profile of a heavy impurity differs significantly in sawtoothing plasmas from the one predicted by neoclassical theory when neglecting MHD events. Sawtooth crashes impede impurity accumulation, but also weaken the impurity outflux due to the temperature gradient when the latter is dominant
A 5D gyrokinetic full-f global semi-lagrangian code for flux-driven ion turbulence simulations
International audienceThis paper addresses non-linear gyrokinetic simulations of ion temperature gradient (ITG) turbulence in tokamak plasmas. The electrostatic Gysela code is one of the few international 5D gyrokinetic codes able to perform global, full-f and flux-driven simulations. Its has also the numerical originality of being based on a semi-Lagrangian (SL) method. This reference paper for the Gysela code presents a complete description of its multi-ion species version including: (i) numerical scheme, (ii) high level of parallelism up to 500k cores and (iii) conservation law properties
- …