28 research outputs found
Cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid
A retrospective chronic cumulative risk assessment of dietary exposure to pesticide residues, supported by an uncertainty analysis based on expert knowledge elicitation, was conducted for two effects on the thyroid, hypothyroidism and parafollicular cell (Câcell) hypertrophy, hyperplasia and neoplasia. The pesticides considered in this assessment were identified and characterised in the scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the thyroid. Cumulative exposure assessments were conducted through probabilistic modelling by EFSA and the Dutch National Institute for Public Health and the Environment (RIVM) using two different software tools and reported separately. These exposure assessments used monitoring data collected by Member States under their official pesticide monitoring programmes in 2014, 2015 and 2016 and individual consumption data from 10 populations of consumers from different countries and different age groups. This report completes the characterisation of cumulative risk, taking account of the available data and the uncertainties involved. For each of the 10 populations, it is concluded with varying degrees of certainty that cumulative exposure to pesticides that have the chronic effects on the thyroid mentioned above does not exceed the threshold for regulatory consideration established by risk managers
Metabolites in the regulatory risk assessment of pesticides in the EU
A large majority of chemicals is converted into metabolites through xenobiotic-metabolising enzymes. Metabolites may present a spectrum of characteristics varying from similar to vastly different compared with the parent compound in terms of both toxicokinetics and toxicodynamics. In the pesticide arena, the role of metabolism and metabolites is increasingly recognised as a significant factor particularly for the design and interpretation of mammalian toxicological studies and in the toxicity assessment of pesticide/metabolite-associated issues for hazard characterization and risk assessment purposes, including the role of metabolites as parts in various residues in ecotoxicological adversities. This is of particular relevance to pesticide metabolites that are unique to humans in comparison with metabolites found in in vitro or in vivo animal studies, but also to disproportionate metabolites (quantitative differences) between humans and mammalian species. Presence of unique or disproportionate metabolites may underlie potential toxicological concerns. This review aims to present the current state-of-the-art of comparative metabolism and metabolites in pesticide research for hazard and risk assessment, including One Health perspectives, and future research needs based on the experiences gained at the European Food Safety Authority
Scientific Opinion about the Guidance of the Chemical Regulation Directorate (UK) on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessments
Abstract The EFSA Panel on Plant Protection Products and their Residues reviewed the guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessment. The inclusion of aged sorption is a higher tier in the groundwater leaching assessment. The Panel based its review on a test with three substances taken from a data set provided by the European Crop Protection Association. Particular points of attention were the quality of the data provided, the proposed fitting procedure of aged sorption experiments and the proposed method for combining results obtained from aged sorption studies and lowerâtier studies on degradation and adsorption. Aged sorption was a relevant process in all cases studied. The test revealed that the guidance could generally be well applied and resulted in robust and plausible results. The Panel considers the guidance suitable for use in the groundwater leaching assessment after the recommendations in this Scientific Opinion have been implemented, with the exception of the use of field data to derive aged sorption parameters. The Panel noted that the draft guidance could only be used by experienced users because there is no software tool that fully supports the work flow in the guidance document. It is therefore recommended that a userâfriendly software tool be developed. Aged sorption lowered the predicted concentration in groundwater. However, because aged sorption experiments may be conducted in different soils than lowerâtier degradation and adsorption experiments, it cannot be guaranteed that the higher tier predicts lower concentrations than the lower tier, while lower tiers should be more conservative than higher tiers. To mitigate this problem, the Panel recommends using all available higherâ and lowerâtier data in the leaching assessment. The Panel further recommends that aged sorption parameters for metabolites be derived only from metaboliteâdosed studies. The formation fraction can be derived from parentâdosed degradation studies, provided that the parent and metabolite are fitted with the bestâfit model, which is the double firstâorder in parallel model in the case of aged sorption
Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia
In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOPâs informed Integrated Approach for Testing and Assessment (IATA)
A perspective on the developmental toxicity of inhaled nanoparticles.
This paper aimed to clarify whether maternal inhalation of engineered nanoparticles (NP) may constitute a hazard to pregnancy and fetal development, primarily based on experimental animal studies of NP and air pollution particles. Overall, it is plausible that NP may translocate from the respiratory tract to the placenta and fetus, but also that adverse effects may occur secondarily to maternal inflammatory responses. The limited database describes several organ systems in the offspring to be potentially sensitive to maternal inhalation of particles, but large uncertainties exist about the implications for embryoâfetal development and health later in life. Clearly, the potential for hazard remains to be characterized. Considering the increased production and application of nanomaterials and related consumer products a testing strategy for NP should be established. Due to large gaps in data, significant amounts of groundwork are warranted for a testing strategy to be established on a sound scientific basis
Stage-dependent functions of GATA-3 in lymphoid lineage determination and type 2 immunity
GATA-3 est un facteur de transcription qui est connu pour son rÎle dans la biologie des cellules T. Dans cette thÚse, on décrit le rÎle de GATA-3 dans l'engagement des cellules dans le lignage T. De plus, on caractérise le rÎle de GATA-3 dans le développement des innate lymphoid cells de groupe 2 (ILC2) qui ont été découvertes récemment. Les ILC2s sont de puissants producteurs de cytokines de type 2 et résident aux surfaces muqueuses, y compris le poumon. On fait une comparaison de la contribution des cellules Th2 et des ILC2 à l'inflammation allergique chez les modÚles murins d'asthme.GATA-3 is a transcription factor that has been extensively studied for its role in T cell biology. In this thesis, we describe the role of GATA-3 in T cell commitment. Furthermore, we characterize the role of GATA-3 in the development of the recently discovered group 2 innate lymphoid cells (ILC2). ILC2 are potent producers of type-2 cytokines and reside at mucosal surfaces, including the lung. We therefore compare the contribution of ILC2 and Th2 cells to allergic inflammation in murine asthma models.PARIS7-BibliothÚque centrale (751132105) / SudocSudocFranceF
Is current risk assessment of non-genotoxic carcinogens protective?
Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable
Is current risk assessment of non-genotoxic carcinogens protective?
Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable