127 research outputs found

    Wideband Power Spectrum Sensing: a Fast Practical Solution for Nyquist Folding Receiver

    Full text link
    The limited availability of spectrum resources has been growing into a critical problem in wireless communications, remote sensing, and electronic surveillance, etc. To address the high-speed sampling bottleneck of wideband spectrum sensing, a fast and practical solution of power spectrum estimation for Nyquist folding receiver (NYFR) is proposed in this paper. The NYFR architectures is can theoretically achieve the full-band signal sensing with a hundred percent of probability of intercept. But the existing algorithm is difficult to realize in real-time due to its high complexity and complicated calculations. By exploring the sub-sampling principle inherent in NYFR, a computationally efficient method is introduced with compressive covariance sensing. That can be efficient implemented via only the non-uniform fast Fourier transform, fast Fourier transform, and some simple multiplication operations. Meanwhile, the state-of-the-art power spectrum reconstruction model for NYFR of time-domain and frequency-domain is constructed in this paper as a comparison. Furthermore, the computational complexity of the proposed method scales linearly with the Nyquist-rate sampled number of samples and the sparsity of spectrum occupancy. Simulation results and discussion demonstrate that the low complexity in sampling and computation is a more practical solution to meet the real-time wideband spectrum sensing applications

    Distributed UAV Swarm Augmented Wideband Spectrum Sensing Using Nyquist Folding Receiver

    Full text link
    Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions

    Extracellular nanomatrix-induced self-organization of neural stem cells into miniature substantia nigra-like structures with therapeutic effects on Parkinsonian rats

    Get PDF
    Substantia nigra (SN) is a complex and critical region of the brain wherein Parkinson's disease (PD) arises from the degeneration of dopaminergic neurons. Miniature SN‐like structures (mini‐SNLSs) constructed from novel combination of nanomaterials and cell technologies exhibit promise as potentially curative cell therapies for PD. In this work, a rapid self‐organization of mini‐SNLS, with an organizational structure and neuronal identities similar to those of the SN in vivo, is achieved by differentiating neural stem cells in vitro on biocompatible silica nanozigzags (NZs) sculptured by glancing angle deposition, without traditional chemical growth factors. The differentiated neurons exhibit electrophysiological activity in vitro. Diverse physical cues and signaling pathways that are determined by the nanomatrices and lead to the self‐organization of the mini‐SNLSs are clarified and elucidated. In vivo, transplantation of the neurons from a mini‐SNLS results in an early and progressive amelioration of PD in rats. The sculptured medical device reported here enables the rapid and specific self‐organization of region‐specific and functional brain‐like structures without an undesirable prognosis. This development provides promising and significant insights into the screening of potentially curative drugs and cell therapies for PD

    Pediatric myelin oligodendrocyte glycoprotein antibody-associated disease in southern China: analysis of 93 cases

    Get PDF
    ObjectiveTo study the clinical features of children diagnosed with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) in southern China.MethodsClinical data of children diagnosed with MOGAD from April 2014 to September 2021 were analyzed.ResultsA total of 93 children (M/F=45/48; median onset age=6.0 y) with MOGAD were involved. Seizures or limb paralysis was the most common onset or course symptom, respectively. The most common lesion locations in brain MRI, orbital MRI, and spinal cord MRI were basal ganglia and subcortical white matter, the orbital segment of the optic nerve, and the cervical segment, respectively. ADEM (58.10%) was the most common clinical phenotype. The relapse rate was 24.7%. Compared with the patients without relapse, relapsed patients had a longer interval from onset to diagnosis (median: 19 days VS 20 days) and higher MOG antibody titer at onset (median: 1:32 VS 1:100) with longer positively persistent (median: 3 months VS 24 months). All patients received IVMP plus IVIG at the acute phase, and 96.8% of patients achieved remission after one to three courses of treatment. MMF, monthly IVIG, and maintaining a low dose of oral prednisone were used alone or in combination as maintenance immunotherapy for relapsed patients and effectively reduced relapse. It transpired 41.9% of patients had neurological sequelae, with movement disorder being the most common. Compared with patients without sequelae, patients with sequelae had higher MOG antibody titer at onset (median: 1:32 VS 1:100) with longer persistence (median: 3 months VS 6 months) and higher disease relapse rate (14.8% VS 38.5%).ConclusionsResults showed the following about pediatric MOGAD in southern China: the median onset age was 6.0 years, with no obvious sex distribution difference; seizure or limb paralysis, respectively, are the most common onset or course symptom; the lesions of basal ganglia, subcortical white matter, the orbital segment of the optic nerve, and cervical segment were commonly involved in the CNS MRI; ADEM was the most common clinical phenotype; most had a good response to immunotherapy; although the relapse rate was relatively high, MMF, monthly IVIG and a low dose of oral prednisone might effectively reduce relapse; neurological sequelae were common, and possibly associated with MOG antibody status and disease relapse

    Precision Higgs physics at the CEPC

    Get PDF
    The discovery of the Higgs boson with its mass around 125 GeV by the ATLAS and CMS Collaborations marked the beginning of a new era in high energy physics. The Higgs boson will be the subject of extensive studies of the ongoing LHC program. At the same time, lepton collider based Higgs factories have been proposed as a possible next step beyond the LHC, with its main goal to precisely measure the properties of the Higgs boson and probe potential new physics associated with the Higgs boson. The Circular Electron Positron Collider~(CEPC) is one of such proposed Higgs factories. The CEPC is an e+ee^+e^- circular collider proposed by and to be hosted in China. Located in a tunnel of approximately 100~km in circumference, it will operate at a center-of-mass energy of 240~GeV as the Higgs factory. In this paper, we present the first estimates on the precision of the Higgs boson property measurements achievable at the CEPC and discuss implications of these measurements.Comment: 46 pages, 37 figure

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V

    Alignment of the ATLAS Inner Detector in Run 2

    Get PDF
    The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets

    Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b channel with the ATLAS detector using pp collisions at √s = 13 TeV

    Get PDF
    This paper describes a search for beyond the Standard Model decays of the Higgs boson into a pair of new spin-0 particles subsequently decaying into b -quark pairs, H → a a → ( b ¯ b ) ( b ¯ b ) , using proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider at center-of-mass energy √ s = 13     TeV . This search focuses on the range 15     GeV ≤ m a ≤ 30     GeV , where the decay products are collimated; it is complementary to a previous search in the same final state targeting the range 20     GeV ≤ m a ≤ 60     GeV , where the decay products are well separated. A novel strategy for the identification of the a → b ¯ b decays is deployed to enhance the efficiency for topologies with small separation angles. The search is performed with 36     fb − 1 of integrated luminosity collected in 2015 and 2016 and sets upper limits on the production cross section of H → a a → ( b ¯ b ) ( b ¯ b ) , where the Higgs boson is produced in association with a Z boson
    corecore