359 research outputs found

    Aerosol delivery to ventilated newborn infants: historical challenges and new directions

    Get PDF
    There are several aerosolized drugs which have been used in the treatment of neonatal respiratory illnesses, such as bronchodilators, diuretics, and surfactants. Preclinical in vitro and in vivo studies identified a number of variables that affect aerosol efficiency, including particle size, aerosol flows, nebulizer choice, and placement. Nevertheless, an optimized aerosol drug delivery system for mechanically ventilated infants still does not exist. Increasing interest in this form of drug delivery requires more controlled and focused research of drug/device combinations appropriate for the neonatal population. In the present article, we review the research that has been conducted thus far and discuss the next steps in developing the optimal aerosol delivery system for use in mechanically ventilated neonates

    Metformin and the gastrointestinal tract

    Get PDF
    Metformin is an effective agent with a good safety profile that is widely used as a first-line treatment for type 2 diabetes, yet its mechanisms of action and variability in terms of efficacy and side effects remain poorly understood. Although the liver is recognised as a major site of metformin pharmacodynamics, recent evidence also implicates the gut as an important site of action. Metformin has a number of actions within the gut. It increases intestinal glucose uptake and lactate production, increases GLP-1 concentrations and the bile acid pool within the intestine, and alters the microbiome. A novel delayed-release preparation of metformin has recently been shown to improve glycaemic control to a similar extent to immediate-release metformin, but with less systemic exposure. We believe that metformin response and tolerance is intrinsically linked with the gut. This review examines the passage of metformin through the gut, and how this can affect the efficacy of metformin treatment in the individual, and contribute to the side effects associated with metformin intolerance

    Azithromycin reduces spontaneous and induced inflammation in ΔF508 cystic fibrosis mice

    Get PDF
    BACKGROUND: Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin modulates lung inflammation in cystic fibrosis mice. METHODS: We monitored cellular and molecular inflammatory markers in lungs of cystic fibrosis mutant mice homozygous for the ΔF508 mutation and their littermate controls, either in baseline conditions or after induction of acute inflammation by intratracheal instillation of lipopolysaccharide from Pseudomonas aeruginosa, which would be independent of interactions of bacteria with epithelial cells. The effect of azithromycin pretreatment (10 mg/kg/day) given by oral administration for 4 weeks was evaluated. RESULTS: In naive cystic fibrosis mice, a spontaneous lung inflammation was observed, characterized by macrophage and neutrophil infiltration, and increased intra-luminal content of the pro-inflammatory cytokine macrophage inflammatory protein-2. After induced inflammation, cystic fibrosis mice combined exaggerated cellular infiltration and lower anti-inflammatory interleukin-10 production. In cystic fibrosis mice, azithromycin attenuated cellular infiltration in both baseline and induced inflammatory condition, and inhibited cytokine (tumor necrosis factor-α and macrophage inflammatory protein-2) release in lipopolysaccharide-induced inflammation. CONCLUSION: Our findings further support the concept that inflammatory responses are upregulated in cystic fibrosis. Azithromycin reduces some lung inflammation outcome measures in cystic fibrosis mice. We postulate that some of the benefits of azithromycin treatment in cystic fibrosis patients are due to modulation of lung inflammation

    Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection

    Get PDF
    peer-reviewedBackground A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. Results We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. Conclusions We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.This research was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No. 641984, through funding of the List_MAPS consortium. We also acknowledge funding and support from Science Foundation Ireland (SFI) in the form of a center grant (APC Microbiome Ireland grant SFI/12/RC/2273)

    Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model

    Get PDF
    The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle

    The Effects of Herbivory by a Mega- and Mesoherbivore on Tree Recruitment in Sand Forest, South Africa

    Get PDF
    Herbivory by megaherbivores on woody vegetation in general is well documented; however studies focusing on the individual browsing effects of both mega- and mesoherbivore species on recruitment are scarce. We determined these effects for elephant Loxodonta africana and nyala Tragelaphus angasii in the critically endangered Sand Forest, which is restricted to east southern Africa, and is conserved mainly in small reserves with high herbivore densities. Replicated experimental treatments (400 m2) in a single forest patch were used to exclude elephant, or both elephant and nyala. In each treatment, all woody individuals were identified to species and number of stems, diameter and height were recorded. Results of changes after two years are presented. Individual tree and stem densities had increased in absence of nyala and elephant. Seedling recruitment (based on height and diameter) was inhibited by nyala, and by elephant and nyala in combination, thereby preventing recruitment into the sapling stage. Neither nyala or elephant significantly reduced sapling densities. Excluding both elephant and nyala in combination enhanced recruitment of woody species, as seedling densities increased, indicating that forest regeneration is impacted by both mega- and mesoherbivores. The Sand Forest tree community approached an inverse J-shaped curve, with the highest abundance in the smaller size classes. However, the larger characteristic tree species in particular, such as Newtonia hildebrandtii, were missing cohorts in the middle size classes. When setting management goals to conserve habitats of key importance, conservation management plans need to consider the total herbivore assemblage present and the resulting browsing effects on vegetation. Especially in Africa, where the broadest suite of megaherbivores still persists, and which is currently dealing with the ‘elephant problem’, the individual effects of different herbivore species on recruitment and dynamics of forests and woodlands are important issues which need conclusive answers

    Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis

    Get PDF
    Knowledge about associations between changes in the structure and/or function of intestinal microbes (the microbiota) and the pathogenesis of various diseases is expanding. However, interactions between the intestinal microbiota and different pharmaceuticals and the impact of these on responses to treatment are less well studied. Several mechanisms are known by which drug-microbiota interactions can influence drug bioavailability, efficacy, and/or toxicity. This includes direct activation or inactivation of drugs by microbial enzymes which can enhance or reduce drug effectiveness. The extensive metabolic capabilities of the intestinal microbiota make it a hotspot for drug modification. However, drugs can also influence the microbiota profoundly and change the outcome of interactions with the host. Additionally, individual microbiota signatures are unique, leading to substantial variation in host responses to particular drugs. In this review, we describe several known and emerging examples of how drug-microbiota interactions influence the responses of patients to treatment for various diseases, including inflammatory bowel disease, type 2 diabetes and cancer. Focussing on rheumatoid arthritis (RA), a chronic inflammatory disease of the joints which has been linked with microbial dysbiosis, we propose mechanisms by which the intestinal microbiota may affect responses to treatment with methotrexate which are highly variable. Furthering our knowledge of this subject will eventually lead to the adoption of new treatment strategies incorporating microbiota signatures to predict or improve treatment outcomes

    Local Air Quality Management policy and practice in the UK: The case for greater Public Health integration and engagement

    Get PDF
    © 2016 Elsevier Ltd. The UK's Local Air Quality Management (LAQM) regime is designed to protect people's health from the ill-effects of air pollution, but it is failing to achieve its full potential. The Public Health aspects of, perspectives on, and integration and engagement in, LAQM have been poorly considered to date. This critical literature review assessed LAQM-related strengths and limitations in order to explore how Public Health, through greater integration and engagement, can add value to the regime.'Structure' and 'process' weaknesses were identified, including: A poorly defined Public Health role, a narrowly-scoped prescribed process, risk assessment uncertainties, ineffective communications, shallow evaluations and disconnected policies. Separately and cumulatively, these have hindered Public Health integration in LAQM policy and practice and stunted the regime's evolution. Engaging Public Health in LAQM future design and delivery can help solve these problems, by improving risk assessments and raising awareness of air pollution and other health-influencing relationships, targeting action in high-need areas, coordinating air pollution mitigation and health improvement interventions, and connecting different policy areas.Increasing Public Health integration and engagement in LAQM can enhance the existing regime. Acting now is timely from both LAQM and Public Health perspectives. This review's findings should be used to inform debates and decisions around the future development of Local Air Quality Management arrangements both in the UK and beyond

    Gut-central nervous system axis is a target for nutritional therapies

    Get PDF
    Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies
    corecore