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Abstract

infection and altered gene expression profiles in the liver.

Background: A westernized diet comprising a high caloric intake from animal fats is known to influence the
development of pathological inflammatory conditions. However, there has been relatively little focus upon the
implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat
(HF) diet upon parameters that influence Listeria monocytogenes infection in mice.

Results: We determined that short-term administration of a HF diet increases the number of goblet cells, a known
binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a
pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly
increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed
animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus,
Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes
were further exaggerated but host inflammatory responses were significantly downregulated relative to Listerig-infected
LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context
of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic

Conclusions: We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through
analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-
term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes
infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a
consideration when developing models that reflect human infectious disease.
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Background

Increased consumption of a ‘westernized’ diet, compris-
ing high caloric intake from fats and reduced consump-
tion of fermentable fibre, has been linked to the current
pandemic of chronic inflammatory conditions such as
obesity, type 2 diabetes, inflammatory bowel disease and
allergic asthma [1]. A diet rich in animal-derived fats
can reduce gastrointestinal barrier function, influence
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microbiota composition and alter gastrointestinal and
systemic inflammatory responses [1-3]. Such profound
physiological responses in the host are likely to underpin
pathological changes, particularly at mucosal surfaces
[1]. However, the potential for a high-fat, westernized
diet to influence the progression of infectious disease
has received relatively little attention. We proposed to
investigate this phenomenon using Listeria monocyto-
genes, a foodborne pathogen that causes a serious invasive
disease (listeriosis) in susceptible hosts, is increasingly as-
sociated with large common-source outbreaks of disease
and has a high mortality rate.
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L. monocytogenes has been extensively investigated as
a model intracellular pathogen to uncover the biological
mechanisms involved in host cell invasion, intracellular
parasitism and resultant host immunity [4]. The majority
of such studies have utilized cell culture models or sys-
temic murine infection. However, an increasing number
of studies have begun to focus upon the gastrointestinal
phase of infection. It is clear that the pathogen can sense
and respond to both local physico-chemical signals [5-
7] and the presence of autochthonous organisms [6] in
the gastrointestinal environment, and environmental
adaptation is likely to influence the ability of the patho-
gen to survive and transiently replicate in the intestine
[5, 7]. Subsequent invasion of the host is through inter-
action between microbial internalin A (InlA) and host
E-cadherin (E-cad), a process which is most efficient in
the vicinity of goblet cells where E-cad is more likely to
be accessible [8]. In addition, there is a role for the
microbiota in providing a barrier to infection and in
modifying the host immune response to the pathogen
locally [6, 9-11].

We employed a systems approach to study the effects
of a HF diet upon a number of parameters associated
with the infectious process both before and after infec-
tion with L. monocytogenes. In particular, we examined
both microbiota and host physiological changes influ-
enced by diet both immediately prior to infection and
also during the peak period of active infection. Our find-
ings indicate that a relatively short-term change in diet,
to a westernized HF diet, increases susceptibility to oral
infection with L. monocytogenes concomitant with a sig-
nificantly altered physiological landscape in both the
gastrointestinal tract and the liver. Furthermore, our
findings show that diet influences the systemic phase of
infection alone suggesting a profound system-wide alter-
ation to host physiology that alters susceptibility to
infection.

Results and discussion

High-fat diet increases susceptibility to oral L.
monocytogenes infection

We established a study design (Fig. 1a) in which C57Bl/
6] mice were fed either a HF diet (45% of the total cal-
oric intake from fat), a matched low-fat (LF) diet (10% of
the total caloric intake from fat) or regular chow (18% of
the total caloric intake from fat) (Additional file 1: Figure
Sla). Feeding was for 2 weeks in order to avoid alter-
ations in systemic fat deposition (obesity) and metabol-
ism associated with longer-term feeding in this model
[12]. Indeed, murine body weights were comparable
across the different groups after switching diets for 2
weeks (Additional file 1: Figure S1b). At day 13, mice
were infected perorally with a strain of L. monocytogenes
(designated EGDe™) in which the InlA protein has been
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altered to enhance interaction with murine E-cad,
thereby increasing the efficacy of the model as a meas-
ure of invasive disease [13, 14]. It is known that
wild-type L. monocytogenes InlA interacts poorly with
murine E-cad [4], most likely translocates passively at
Peyer’s patches in non-permissive models [15] and is in-
capable of significant invasive disease in normal mice.
We, and others, recognize the limitations of both models
[10] and appreciate that the altered InlA expressed in L.
monocytogenes EGDe™ in addition to enhancing inter-
action with E-cadherin may also interact with murine
N-cadherin (mN-cad) [16]. However, the murine model
is also reflective of InlA-E-cad-independent pathways
used by L. monocytogenes to invade and translocate
across the intestine [17] and this invasive mechanism is
likely to be relevant to human infection [18, 19].

Feeding of HF diet for 2 weeks significantly increased
susceptibility to oral L. monocytogenes EGDe™ infection
compared to LF- or chow-fed animals, as indicated by
increased levels of the pathogen in internal organs and
caecum at day 3 post-infection (Fig. 1b). Faecal levels of
the pathogen are indicated in Additional file 2: Figure S2.
Repeat experiments utilising an engineered biolumines-
cent strain of L. monocytogenes EGDe™ showed similar re-
sults (Additional file 2: Figure S2). The data indicate a
robust influence of diet upon susceptibility to oral L.
monocytogenes EGDe™ infection in a murine model.

Dietary modulation of host physiology prior to infection
Diet is known to influence the physiology of the host,
and significant research has focused upon the changes
that are associated with the onset of obesity in mice fed
a HF diet [20]. In contrast, relatively few studies have
investigated the gastrointestinal or systemic changes
that occur prior to the onset of obesity in this model
[21]. We therefore investigated the influence of differ-
ent diets upon the physiological response of mice fol-
lowing 2 weeks of dietary intervention, immediately
prior to oral infection with L. monocytogenes. This rep-
resents an index of the immediate environment into
which Listeria is introduced and must establish early
infection. We particularly focused upon parameters that
are known to play a role in the pathogenesis of L.
monocytogenes.

Blinded histological analysis indicated a significant in-
crease in intestinal goblet cell numbers in mice fed a HF
diet relative to both LF- and chow-fed groups (Fig. 2a).
Our data suggest an early response of the gut to HF diet
feeding that involves generation of goblet cells, and sup-
port previous studies showing elevated goblet cell num-
bers associated with the onset of obesity albeit at a
much later stage of HF dietary feeding [22]. As goblet
cells are a preferential site of invasion by L. monocyto-
genes, including L. monocytogenes strains expressing
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Fig. 1 Effect of HF westernized diet on Listeria monocytogenes infection in mice. a Study overview. C57BL/6 mice (n = 10) were fed with a
low-fat diet (10% fat), chow (18% fat) and high-fat diet (45% fat) for 13 days, orally infected with 5x 107 L. monocytogenes EGDe™ and infection
). Sampling points for faecal microbiota analysis during dietary modulation of the host and during
infection are indicated. Animals were euthanized, and the total number of L. monocytogenes EGDe™ CFU per organ was determined by plating
homogenized organs. The phase from DO to D13 represents the influence of diet upon the host and microbiota whereas D13 to D16 represents
a 3-day infection with L. monocytogenes. b Increased dietary fat increases host susceptibility to oral infection with L. monocytogenes EGDe"™.
Listeria burden in the spleen, cecum and mesenteric lymph nodes of C57BL/6 mice fed with diets varying in percentage of fat content (n =10,
standard deviation from the mean, statistical analysis was conducted using one-way ANOVA and Dunnett's multiple comparison test in relation

murinized InlA (the model used in this study) [8, 16],
the elevated goblet cell numbers seen in our system are

likely to, at least in part, enable enhanced infection.

Transcriptional analysis of a range of relevant host
markers was used to determine regulatory changes in
the host that occurred between day 0 (the initiation of
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Diet influences the host physiological landscape prior to infection (DO to D13). a Number of goblet cells (D13) present on one villus was
quantified and divided by the villus length (groups were blinded). Statistical analysis was conducted using one-way ANOVA and Dunnett's multiple
comparison test in relation to DO. Representative histological images demonstrating goblet cell density (left representative of LF group and right
representative of HF group on day D13) (bar 200 pm). lleal paraffin sections of 5 um were stained with alcian blue and periodic acid-Schiff (PAS) and
counterstained with Schiff reagent and Nuclear Fast Red solution. Arrows indicate examples of goblet cells. b Murine gene expression profile in
response to increased dietary fat content by gRT-PCR. Represented as log;, of the fold change between the condition and the control (D0). Statistical
analysis was conducted using one-way ANOVA and Dunnett's multiple comparison test. ¢ Comparison of the changes in bacterial communities during
controlled feeding. Unweighted Unifrac PCoA faecal microbiota distances between groups of mice fed different diets (blue representing LF; red
representing HF) prior to infection (time points DO, D6, D13). p values were measured using an Adonis test (p value = Te-5, R (proportion of variance
explained) is 048). d Changes in bacterial abundance during dietary shifts (DO to D13) for the most abundant phyla, Bacteroidetes and Firmicutes.

e Changes in bacterial abundance between LF and HF diets at the family level for the most abundant phyla. A volcano plot showing the fold change
between HF and LF diets at D13. Each point represents an operational taxonomic unit (OTU). The x-axis represents the log, of the fold change whilst
the y-axis is the negative log;o of DESeq?2 p values adjusted for multiple testing using the false discovery rate method. Points to the right of the plot

hits, p < 0.05. Error bars represent SEM

with positive log2FoldChange values represent bacterial taxa with increased abundance in the mice on the HF diet relative to the mice on the LF
diet and those with negative log2FoldChange values represent bacterial taxa with increased abundance in the LF diet relative to the HF diet. The
horizontal black line represents the cutoff for statistical significance, an adjusted p value of 0.05. f A correlation between the host regulatory response
and the microbiota at the genus level on D13. Spearman correlation, between the diet-dependent relative abundance of bacterial genera (arrows
represent abundance in the mice on the HF diet relative to the mice on the LF diet) and the fold change for genes in both ileum and liver. Results
shown separately for genes associated with host immunity, tight junction proteins and host-pathogen interaction. Represented are only significant

dietary intervention) and day 13 (just prior to L. monocy-
togenes infection). The host transcriptional profile was
similar when comparing animals fed a commonly used
mouse chow and animals fed the LF diet. However, HF
dietary feeding significantly altered the pattern of gene
transcription in mice (Fig. 2b). Generally, mice fed a HF
diet demonstrated elevated inflammatory gene expres-
sion relative to the LF- and chow-fed mice. The data are
consistent with the concept that a HF diet promotes a
pro-inflammatory state in the host and are supportive of
longer-term studies examining host inflammation fol-
lowing the onset of obesity [21, 23]. In particular, the ex-
pression of IL-23, a key mediator of the inflammatory
response in the gut, is upregulated in the ileum of the
animals fed the HF diet. We also determined increased
expression of genes encoding IL-1f in the ileum and
liver, iNOS in the ileum and TNF-« in the liver [24, 25],
all of which are associated with the onset of obesity.
Whilst TNF-a is essential for anti-listerial resistance
[24], the role of both IL-1p and iNOS during Listeria in-
fection is less pronounced and subject to some debate
[25-27]. Ileal expression of genes encoding anti-listerial
cytokines IFN-y [28] and IL-17 [29] was significantly re-
duced in HF mice prior to infection. Notably, reduced
expression of Reglll-y was more pronounced in HF
diet-fed animals in comparison to LF- or chow-fed mice.
Reglll-y is an anti-bacterial lectin that is anti-listerial
[30, 31] and also plays a role in microbial homeostasis in
the gut through targeting Gram-positive commensals
[32]. The expression of Reglll-y and other anti-bacterial
peptides are known to be influenced by diet and are sub-
ject to control by the microbiota [33].

Overall transcription of genes encoding tight junction
proteins in the ileum was reduced in HF-fed animals

relative to the other groups. Expression of tight junction
proteins can be used as an assessment of barrier func-
tion and has previously been shown to be reduced in
obese mice [34, 35]. Short-term studies in rodents dem-
onstrate a reduction of claudin-7 levels following 4
weeks of HF diet [36], but no changes in Zo-1 at 3 days
[37] or 1 week [35] of HF dietary feeding, suggesting
time-dependent alterations which we see at 2 weeks of
dietary intervention. Finally, expression of genes encod-
ing mN-cad [8] and MET ([38], known binding sites for
L. monocytogenes invasion factors InlA and InlB in our
murine model of infection, were not altered in the ileum
of HF-fed mice but were significantly increased in the
livers of these animals when compared to LF- or
chow-fed groups. The gene encoding E-cad was down-
regulated in the ileum in concert with other epithelial
junction proteins. Overall, we demonstrate significant al-
terations to the gastrointestinal environment through
short-term HF feeding just prior to infection in our
model system with many changes potentially relevant to
the pathogenesis of L. monocytogenes.

Short-term HF diet alters the gut microbiota

As the gastrointestinal microbiota is known to provide a
barrier to L. monocytogenes infection [10] and also influ-
ences local barrier function [35] and immune homeostasis
[1, 39, 40], we investigated alterations of the microbiota in
our model at day 13 (prior to infection) with a focus upon
differences between groups fed HF and matched LF diets.
The extent of similarity between microbial communities
was visualized through unweighted UniFrac PCoA of op-
erational taxonomic units (OTUs), grouped at 97% se-
quence identity. The B-diversity metrics support a clear
dietary driven separation (along PC2) between the HF-fed
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(in red) and LF-fed (in blue) mice on day 13 (Fig. 2c¢).
a-diversity metrics are represented in Additional file 3:
Figure S3. Relative to animals on a LF diet, the HF group
had an increased representation of bacteria belonging to
the Firmicutes phylum and a decrease in the Bacteroidetes
(Fig. 2d; Additional file 4: Figure S4). This shift in the Fir-
micutes/Bacteroidetes ratio is associated with low-grade
inflammation, reduction in barrier function and glucose
intolerance in the context of a diet rich in animal fat [41].
Figure 2e shows a significant increase in the abundance of
Bacteroidaceae and Rikenellaceae in the LF-fed group and
a significant increase in abundance of Ruminococcaceae
and Lachnospiraceae in the HF-fed mice. These patterns
of family-level alterations to the microbiota have previ-
ously been reported for healthy individuals and patients
with disorders associated with obesity, respectively
[42, 43]. The data demonstrate significant diet-related
alterations to gut microbiota composition upon short-
term feeding prior to Listeria infection. Therefore, in our
experimental model, L. monocytogenes is introduced into a
gut environment in which there has been a considerable
taxonomic shift influenced by diet and previously associ-
ated with reduction in barrier function.

To further investigate any potential links between
microbiota changes and the host response to dietary
feeding, we correlated changes in host gene expression
with the abundance of individual members of the faecal
microbiota at the genus level (Fig. 2f). Butyricicoccus,
Clostridium XIVa, Streptococcus and Mucispirillum were
more abundant in mice fed a HF diet, and their abun-
dance correlated with induction of genes encoding host
inflammatory responses. Associations between these
genera and inflammatory conditions have been reported
previously [40, 44]. Parabacteroides and Bacteroides
were relatively more abundant in LF-fed mice and have
previously been reported to be involved in the mainten-
ance of immune homeostasis in the gut and mainten-
ance of intestinal barrier integrity [45, 46]. Herein, we
identified genera (e.g. Clostridium XI, Clostridium XIVa,
Enterococcus spp.) which are influenced by HF dietary
changes and are correlated with expression of genes en-
coding receptors for L. monocytogenes as well as genes
associated with inflammation in the ileum and liver.

High-fat diet alters the physiological response to L.
monocytogenes infection

We subsequently determined the physiological response
to oral L. monocytogenes EGDe™ infection at 3 days
post-infection in the context of HF diet. Goblet cell
numbers post-infection remained elevated in the ileum
of HF diet-fed animals relative to LF- or chow-fed ani-
mals (Fig. 3a). Gene expression profiling of target genes
was used to compare gene expression post-infection
with the time point immediately prior to infection (day
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13). Analysis revealed a reduction in expression of genes
encoding inflammatory markers in both ileum and liver
of HF diet-fed animals when compared to mice fed a LF
diet or chow (Fig. 3b). This is supported by histological
analysis of ileal tissue which indicated reduced immune
cell infiltration in response to infection in mice fed a HF
diet (Additional file 5: Figure S5). These are unexpected
findings as these mice have a higher infectious load in local
tissues relative to LF- or chow-fed animals. Furthermore, in
our model, we observed that Listeria infection in the con-
text of HF diet feeding also resulted in a further reduction
in expression of genes encoding tight junction proteins sug-
gestive of a further impairment of barrier function. Our
findings are potentially reflective of very recent studies
demonstrating that L. monocytogenes crosses the intestinal
epithelial barrier by inducing significant mislocalization and
reduction of expression of occludin, claudin-1 and E-cad,
through the induction of TNF-a and IL-6 [17].

We appreciate that a shutdown of gene expression
may, in some manner, be a consequence of higher num-
bers of the pathogen in the tissue, but to our knowledge,
a dose-response correlating immune stimulation with in-
creasing infectious load of L. monocytogenes has not
been examined previously. We propose that the result-
ant dampening of immune stimulation in our model is a
consequence of both the presence of the pathogen and
increased dietary fat intake. In support of this, very re-
cent work has shown that Borrelia burgdorferi infection
in mice fed a high-fat diet suppresses innate immunity
suggesting an immune-regulatory role of dietary fat in-
take which may favour infection [47].

The analysis of the microbiota during L. monocyto-
genes infection (Fig. 3c) indicates a clear separation of com-
munities resulting from the presence of the pathogen in the
context of diet. In particular, LF-fed animals undergo a pro-
found rearrangement of the microbial community structure
from D13 to D16 as a consequence of infection, in both
principal components. An increased Firmicutes/Bacteroi-
detes ratio in the HF group is maintained during L. monocy-
togenes infection (Fig. 3d). The microbial families affected
by infection (D16) (Fig. 3e; Additional file 4: Figure S4) re-
semble those that are influenced by diet alone (D13)
(Fig. 2e); however, we see a stronger representation of the
numbers of operational taxonomic units (OTUs) for both
Bacteroidaceae and Rikenellaceae in the LF-fed group and
Ruminococcaceae and Lachnospiraceae in the HF-fed mice
following Listeria infection. This suggests that Listeria in-
fection in the context of HF diet potentially amplifies OTUs
associated with diet-induced inflammation. Interestingly,
the representation of the Clostridiales family as indi-
cated by the number of significant OTUs has in-
creased abundance in the LF-fed group. This family
has recently been associated with L. monocytogenes
clearance upon infection [10].
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Represented are only significant hits, p < 0.05. Error bars represent SEM

Fig. 3 Impact of dietary fat content in the murine regulatory response to L. monocytogenes infection (D16 in relation to D13). a The number of
goblet cells (D16) present on one villus was quantified and divided by the villus length (groups were blinded). Statistical analysis was conducted
using one-way ANOVA and Dunnett's multiple comparison test in relation to DO. Representative histological images demonstrating goblet cell
density (left representative of LF group and right representative of HF group on day D16). lleal paraffin sections of 5 pm were stained with alcian
blue and periodic acid-Schiff (PAS) and counterstained with Schiff reagent and Nuclear Fast Red solution. Arrows indicate examples of goblet
cells. b Effects of diet on host gene expression post-infection using gRT-PCR. Gene expression relative to D13 (pre-infection), within the same
dietary group, in both ileum and liver on day 16 of dietary feeding (3 days post-infection). Represented as log, of the fold change between the
condition and the control (same diet D13). Statistical analysis was conducted using one-way ANOVA and Dunnett's multiple comparison test.

¢ Comparison of the changes in bacterial communities during controlled feeding. Unweighted Unifrac PCoA faecal microbiota distances between
groups of mice fed different diets (blue representing LF; red representing HF) over indicated time points (D13, D15, D16). p values were measured
using an Adonis test (p value = 0.00099, R” is 0.148). d Changes in bacterial percentage of abundance during dietary shifts (D13 to D16) of the most
abundant phyla, Bacteroidetes and Firmicutes. @ Changes in bacterial abundance between LF and HF diets at the family level for the most abundant
phyla. A volcano plot showing the fold change between high- and low-fat diets at D16. Each point represents an operational taxonomic unit (OTU).
The x-axis represents in the log, of the fold change whilst the y-axis is the negative log; of DESeq2 p values adjusted for multiple testing using the
false discovery rate method. Points to the right of the plot with positive log2FoldChange values represent bacterial taxa with increased abundance in
the mice on the HF diet relative to the mice on the LF diet and those with negative log2FoldChange values represent bacterial taxa with increased
abundance in the LF diet relative to the HF diet. The horizontal black line represents the cutoff for statistical significance, an adjusted p value of 0.05.
f A correlation between the host regulatory response and the microbiota at the genus level on day 16. Spearman correlation, between the diet-
dependent relative abundance of bacterial genera (arrows represent abundance in the mice on the HF diet relative to the mice on the LF diet) and
the fold change for genes in both ileum and liver. Results shown separately for host immunity, tight junctions and host-pathogen interaction genes.

Correlating microbial genera with host gene expres-
sion (Fig. 3f) highlights the general downregulation of
host gene expression following Listeria infection in the
HE-fed group. Directional changes to specific microbial
genera influenced by HF diet (Fig. 3f) were similar to
those seen to be induced by diet alone (Fig. 2f). How-
ever, the correlations with associated host gene expres-
sion profiles were generally reversed, indicating that L.
monocytogenes infection in the context of HF diet was a
significant negative modulator of selected host genes.

High-fat diet increases susceptibility to systemic L.
monocytogenes infection

Whilst this study revealed that diet alone is a driver of
physiological changes in the ileum, it also highlighted an
unexpected increase in expression of genes encoding L.
monocytogenes binding sites (including E-Cad, N-Cad,
gCIgR) in the liver (Fig. 2b). We also noted alterations
to expression levels of genes encoding cytokines in the
liver that have the potential to influence resistance to in-
fection, including an increase in transcription of the
anti-inflammatory cytokine IL-10 in animals fed a HF
diet (Fig. 2b). As these changes occurred prior to infec-
tion, we went on to determine the influence of diet upon
the systemic phase of infection. An intraperitoneal (IP)
infection of L. monocytogenes EGDe™ was administered
after 2 weeks of dietary modulation (Fig. 4). The results
reveal a clear influence of HF diet upon the systemic
phase of L. monocytogenes compared to both chow and
LF diets. The phenomenon was seen for both the muri-
nized EGDe™ and wild-type EGDe strains (Add-
itional file 6: Figure S6) of L. monocytogenes, suggestive
that this effect is not solely due to an increase in
mN-Cad. The data suggest that a westernized HF diet

alters the physiology of the host beyond the gut to
heighten susceptibility to infectious disease.

Conclusions

In the context of a global obesity epidemic and changes
in dietary habits towards increased consumption of a
‘westernized’ diet, there is currently surprisingly little in-
formation regarding the influence of diet upon the pro-
gression of infectious disease. Herein, we demonstrate
that a HF westernized diet significantly and reproducibly
increases susceptibility to L. monocytogenes in a murine
model. HF dietary feeding prior to the onset of obesity
influenced parameters in mice that impact both the in-
testinal and systemic phase of infection, suggesting a
profound system-wide alteration in host physiology. We
appreciate that we have not examined alterations to lis-
terial expression of virulence factors that may occur as a
result of luminal alterations of nutrients. For instance,
altered responses in Listeria have been reported in re-
sponse to exposure to various fatty acids in vitro [48]
and may therefore have the potential to influence infect-
ivity. It is interesting to note that other studies have
demonstrated that a high-fat food delivery matrix can in-
crease infectivity of L. monocytogenes in murine [49] or
primate [50] models. However, the physiological effects
on the host of transient high-fat feeding were not con-
sidered in those studies. The data presented herein sup-
port emerging evidence that diet can significantly
influence infectious disease models [51, 52] and suggest
that diet should be a factor in future evaluation of the
infectious dose of the pathogen. The work raises the in-
triguing possibility that a westernized diet may be a sig-
nificant factor influencing host resistance to infection.
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Fig. 4 Increased dietary fat increases host susceptibility to systemic infection with L. monocytogenes EGDe™. Bacterial burden of Listeria in the
spleen and liver of C57BL/6 mice fed for 13 days with different diets and subsequently infected via the IP route (n = 10). Standard deviation from
the mean, statistical analysis was conducted using one-way ANOVA and Dunnett's multiple comparison test in relation to chow diet. ***p < 0.001.
Error bars represent SEM

Methods

Animal dietary intervention and infection

Seven-week-old female C57BL/6 mice (ENVIGO, UK),
n =10, were housed in a controlled environment with
free access to food and water. The mice were fed a con-
trol chow diet (Teklad Global 2018S Rodent Diet,
ENVIGO, UK), a low-fat diet (DIO series diets
D12450H, Research Diets, Inc., USA) or a high-fat (DIO
series diets D12451, Research Diets, Inc., USA) for 13
days. Thereafter, the animals were either infected
through oral inoculation (IG) or intraperitoneal (IP) in-
fection . Overnight culture of the murinized strain, L.
monocytogenes EGD-e InlA™, was centrifuged (7000xg
for 5 min), washed twice with PBS and resuspended in
PBS. A 200-pl inoculum comprised 3.2 x 10° CFU for
the IG infection and 9 x 10* for IP infection. The pro-
gression of infection followed over a 3-day period [13,
53], with mice maintained on their specific diets for that
period. Mice were euthanized, and the internal organs
aseptically removed and homogenized using stomacher
bags and PBS. For CFU per organ enumeration, dilutions
were plated on BHI (brain heart infusion) agar plates.
Following IG infection, on days 14 (day 1 post-infection)
and 16 (day 3 post-infection), the faecal pellets were col-
lected and plated for CFU to determine shedding of L.
momnocytogenes.

RNA extraction and quantitative RT-PCR analysis

A sample of the liver and the ileum were collected for
the analysis of the host regulatory response to both diet
and infection (transcriptome analysis). The samples were
stabilized with RNAlater (Sigma) and stored at —80°C
until total RNA extraction (RNeasy Plus Universal Mini
Kit, Qiagen). The total RNA extracted was DNase
treated (TURBO DNA-free™ Kit, Ambion), and the tran-
scriptomic analysis was done using RT-PCR (Transcrip-
tor Reverse Transcriptase, Roche). qPCR protocol was
carried out using LightCycler® 480 Probes Master
(Roche) with the Universal Probe Library from Roche.
Primers are outlined in Additional file 7: Table S1. The
amplification setup used was 45 runs in 384-well plates
with the MonoColor hydrolysis probe detection format.

Faecal samples and microbiota profiling

For the analysis of mouse gut microbiota based on 16S
rRNA gene amplicon sequencing, faecal samples were
collected during dietary adaptation prior to infection (on
days 0, 6 and 13) and after infection (on days 15 and
16). Pellets collected were used for microbiota analysis
using 16S rDNA sequencing (DNA extraction using
QIAmp fast DNA stool mini Kit, Qiagen). The quality of
raw sequences was visualized with FastQC. This was
followed by quality filtering using trimmomatic [54].
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Briefly, the first twenty and last twenty bases were
trimmed and then a sliding window was applied (win-
dow size 4 with minimum quality 15) along with a mini-
mum sequencing length of 250 bases. Subsequently,
sequences were filtered via USEARCH with a maximum
e score of 1 [55], and following this, open reference op-
erational taxonomic unit (OTU) clustering was per-
formed in qiime against the Ribosomal Database Project
(RDP) database v11.4 [56]. For sequences failing to be
clustered against the reference database, de novo cluster-
ing was applied [57]. Chimeric sequences were removed
with ChimeraSlayer with the Gold database and
UCHIME [58]. The resulting OTU sequences were clas-
sified, phylum to genus, using Mothur [59] and the RDP
database v11.4 with any assignments with a bootstrap
value of less than 80% labelled unclassified. Species clas-
sification was carried out using SPINGO (v1.3) against
the RDP database (v11.4) with default parameters (simi-
larity score of 0.05 and a bootstrap cutoff of 0.8) [60].
All downstream analysis was performed in R version
3.4.3. Alpha and beta diversity was calculated using the
R package phyloseq [61]. Differences in alpha diversity
were assessed using the Mann-Whitney test. Differential
abundant analysis was performed using DESeq2 [62].
The adonis function in the vegan library was used to as-
sess group-level differences in the microbiota.

Tissue staining and microscopy

Ileal samples were collected for histology analysis, and
the identity of sample groups was blinded to the investi-
gator. The tissue sample was stored in 4% paraformalde-
hyde for 24'h at room temperature and dehydrated with
70% ethanol for 72 h at 4 °C, prior to paraffin embedding
(dehydration and permeation in molten wax in the histo-
kinette in a 21 h overnight cycle; wax blocking of the
samples using the console system TissueTek for 2h).
The wax moulds containing the embedded tissue were
cut using the Leica RM2135 rotary Microtome. For gob-
let cell analysis, ileal paraffin sections of 5um were
stained with alcian blue and periodic acid-Schiff (PAS)
and counterstained with Schiff reagent and Nuclear Fast
Red solution. Sections were mounted in DPX mounting
reagent (Sigma) and imaged using the Olympus BX51
microscope (Olympus DP71 camera), with a x 20 object-
ive. Image analysis was performed using Image]. For
histological scoring, paraffin-embedded ileal sections
(5pum) were stained with haematoxylin and eosin ac-
cording to standard procedures. The sections were
blindly scored using a light microscope (Olympus BX51,
Olympus, Germany). The histology score was adapted
from Drolia et al. [17] with some modifications. The ileal
samples were scored on a scale of 0-3 for two parame-
ters: infiltration of inflammatory cells (mostly mono-
nuclear cells) to the villi and infiltration of mono- and
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polymorphonuclear cells to the crypt, yielding a max-
imum score of 6. In our model, polymorphonuclear cells
were mainly located at the bottom of the crypts. The
gradient of the inflammatory cell infiltration was based
on 3=highly increased, 2 =moderately increased, 1=
mildly increased and 0 = normal.

Statistical analysis

Statistical analyses were conducted with Prism 5
(Graph-Pad Software). Mann-Whitney test was used to
compare the means of the two groups. One-way
ANOVA with a Dunnett’s multiple comparison test was
used for pair-wise comparison of means from more than
two groups in relation to the control, or with Tukey’s
post hoc test for comparison of means relative to the
mean of a control group.

If the p value falls above 0.05, the mean differences
were considered statistically non-significant (NS). For
statistically significant differences, *p <0.05, **p <0.01
and ***p < 0.001.
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