72 research outputs found

    Finalidades de la enseñanza de las ciencias en la Secundaria obligatoria : ¿Alfabetización científica o preparación propedéutica?

    Get PDF
    The purpose of this work is to find out the teachers' opinions regarding the aims and objectives of the teaching of science, within the frame of the educational reform. We attempt to disclose to what extent educational thinking gives priority to the training of the students in scientific concepts, laws and theories needed in further courses (propedeutic training) and how this thinking pays less attention to the so-called scientific literacy which is meant to be the main object of the teaching of science according to the designers of the curriculum. To achieve this, we carried out a multiple and convergent experimental design with a number of samples of teachers. We found a confirmation that in Secondary education, the curricular emphasis of teachers focuses on the propedeutic training of students

    Spanish teachers' views of the goals of science education in secondary education

    Get PDF
    The purpose of this work is to find out teachers' opinions regarding the goals and objectives of the teaching of science, within the frame of educational reform. We attempt to disclose to what extent educational thinking gives priority to the training of the students in scientific concepts, laws and theories needed in further courses (propedeutic training) and how this thinking pays less attention to the so-called scientific literacy which is meant to be the main object of the teaching of science according to the designers of the curriculum. To achieve this, we carried out a multiple and convergent experimental design with a number of samples of teachers. We found a confirmation that in secondary education, the curricular emphasis of teachers focuses on the propedeutic training of students

    Fatigue in laser shock peened open-hole thin aluminium specimens

    Get PDF
    An experimental study was performed in order to determine the influence of the sequence of operations on the effectiveness of Laser Shock Peening (LSP) treatment in increasing the fatigue performances of open-hole aluminium specimens. Residual stress measurements, fractographic analysis and FEM analysis were performed, indicating the presence of compressive residual stresses on the surface of the treated specimens and tensile residual stresses in the mid-section along the thickness of the specimens. Negative effects on fatigue lives were encountered on the specimens with the hole already present, while positive effect were observed in specimens in which the hole was drilled after LSP treatment. These results indicate that LSP can be a good solution for “in production” application, in which open holes are to be drilled after the LSP treatment. The application in which LSP is used “in service” on structures with pre-existing cut-outs, has proven to be impracticable in the investigated configuration

    Extreme Value Theory versus traditional GARCH approaches applied to financial data: a comparative evaluation

    Get PDF
    Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normally distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalised assumption of normally distributed financial returns. Thus it is crucial to model distribution tails properly so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey in 2000 and combine GARCH-type models with the extreme value theory to estimate the tails of three financial index returns ¿ S&P 500, FTSE 100 and NIKKEI 225 ¿ representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are more accurate than those from conventional GARCH models assuming normal or Student¿s t distribution innovations when doing not only in-sample but also out-of-sample estimation. Moreover, these results are robust to alternative GARCH model specifications. The findings of this paper should be useful to investors in general, since their goal is to be able to forecast unforeseen price movements and take advantage of them by positioning themselves in the market according to these predictions

    Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes

    Get PDF
    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms

    The Effect of Sequence of Operations on Fatigue Life of LSP Treated Open-hole Aluminium Specimens

    Full text link
    Fastener holes in aeronautical structures are typical sources of fatigue cracks due to their induced local stress concentration. A very efficient solution to this problem is to establish compressive residual stresses around the fastener holes that retard the fatigue crack nucleation and its subsequent local propagation. Previous work done on the subject of the application of LSP treatment on thin, open-hole specimens [1] has proven that the LSP effect on fatigue life of treated specimens can be detrimental, if the process is not properly optimized. In fact, it was shown that the capability of the LSP to introduce compressive residual stresses around fastener holes in thin-walled structures representative of typical aircraft constructions was not superior to the performance of conventional techniques, such as cold-working

    Experimental Evolution of an Oncolytic Vesicular Stomatitis Virus with Increased Selectivity for p53-Deficient Cells

    Get PDF
    Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53−/− MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53−/− cells but not in isogenic p53+/+ cells, indicating gene-specific adaptation. However, full-length sequencing revealed no obvious or previously described genetic changes associated with oncolytic activity. Half-maximal effective dose (EC50) assays in mouse p53-positive colon cancer (CT26) and p53-deficient breast cancer (4T1) cells indicated that the evolved viruses were more effective against 4T1 cells than the parental virus or a reference oncolytic VSV (MΔ51), but showed no increased efficacy against CT26 cells. In vivo assays using 4T1 syngeneic tumor models showed that one of the evolved lines significantly delayed tumor growth compared to mice treated with the parental virus or untreated controls, and was able to induce transient tumor suppression. Our results show that RNA viruses can be specifically adapted typical cancer features such as p53 inactivation, and illustrate the usefulness of experimental evolution for oncolytic virotherapy

    Variable Mutation Rates as an Adaptive Strategy in Replicator Populations

    Get PDF
    For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates
    corecore