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Extreme Value Theory versus traditional GARCH 
approaches applied to financial data: a comparative 

evaluation 
 

Abstract 
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to 

be normal distributed on a large time scale. But sometimes these fluctuations can become 

determinant, especially when unforeseen large drops in asset prices are observed that could 

result in huge losses or even in market crashes. The evidence shows that these events happen far 

more often than would be expected under the generalized assumption of normal distributed 

financial returns. Thus it is crucial to properly model the distribution tails so as to be able to 

predict the frequency and magnitude of extreme stock price returns. In this paper we follow the 

approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the 

Extreme Value Theory (EVT) to estimate the tails of three financial index returns S&P 500, 

FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our 

results indicate that EVT-based conditional quantile estimates are more accurate than those from 

conventional GARCH models assuming normal or Student’s t distribution innovations when 

doing not only in-sample but also out-of-sample estimation. Moreover, these results are robust 

to alternative GARCH model specifications.  The findings of this paper should be useful to 

investors in general, since their goal is to be able to forecast unforeseen price movements and 

take advantage of them by positioning themselves in the market according to these predictions. 

 

JEL classification: C52; C53; D46 ; G15   

Key words: conditional extreme value theory; tails estimation; backtesting  
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Extreme Value Theory and conventional methods 
applied to financial data: a comparative evaluation 

 
1. Introduction 

Although stock prices fluctuate, the variations are relatively small and are frequently assumed to 

be normal distributed on a large time scale. But sometimes these fluctuations can become 

determinant, especially when unforeseen large spikes in asset prices are observed that could 

result in huge losses or even in market crashes. Besides, based on the quite generalized 

assumption of the normal distribution for financial returns, these “extreme” variations are 

expected to occur with an almost negligible probability. The reason is that the normal density 

function has exponentially decaying tails which assign very small probability to values far from 

the mean of the distribution. Thus, for instance, with independent realizations that are observed 

once a day, we should not expect a “4-sigma event” occurring with a frequency lower than 86 

years, nor a “7-sigma event” with a frequency lower than 56 times the age of the universe i.e. 

13.7 millions of years (Dowd et al. 2008). Of course, the evidence shows that these events 

happen far more often than would be expected under this assumption. 

The key is how to distinguish between extreme and non-extreme events. With the aim of 

answering this question, it is crucial to properly model the distribution tails so as to be able to 

predict the frequency and magnitude of extreme stock price returns. Moreover, as the extreme 

(price fluctuations) events will be defined as those exceeding a predetermined threshold, 

determining such a threshold becomes an essential step in embracing the analysis. 

In the financial literature, the study of the tails of the distributions has mostly focused on the 

lower tail, with the estimation of the so-called Value at Risk (VaR) being the main application. 

VaR is a generalized measure of market risk which indicates the maximum loss, with a given 

probability, over a certain time horizon. More formally, given some confidence level )1,0(∈α , 

VaR at the confidence level α  is given by the smallest number l such that the probability of the 

loss L exceeds l is no longer than (1-α ). Thereby, in probabilistic terms, VaR is a quantile of 
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the loss distribution. However, positive extreme observations are also of relevance beyond the 

estimation of huge benefits for long investors, since they mean losses for short investors.  

In fact, the main goal of rational investors is to make money during both bearish and bullish 

trends in the market. Long position traders invest as buying a stock, holding it while it 

appreciates in price, and eventually sell it for profit. They encounter risk when the price of the 

stock decreases. On the other hand, the short trading position traders reacts exact opposite where 

they firstly sell the stock with the intention to later buy it back at a lower price. Therefore, the 

risk comes from a rise in the price of the stock. Thus, both the upper and lower tails are relevant 

to trading positions.  

In this paper we use the Extreme Value Theory (EVT) to estimate the tails of three financial 

index returns. The modeling of extreme events is the central issue in EVT and the main purpose 

of the theory is to provide asymptotic models for the tails of a distribution. This theory has been 

increasingly playing a role in many research areas such as hydrology and climatology where 

extreme events are not infrequent and can involve important negative (or positive) consequences 

and, more recently, there has been a number of extreme value studies in the finance literature. 

Some examples include Embrechts et al. (1999), who present a broad basis for understanding 

the extreme value theory with applications to finance and insurance; Danielsson and de Vries 

(1997), who test the predictive performance of various VaR methods for simulated portfolios of 

seven US stocks and conclude that EVT is particularly accurate as tails become more extreme 

whereas the conventional variance-covariance and the historical simulation methods under- and 

over-predict losses, respectively; similar results are found in Longin (2000)2, Assaf (2009)3 and 

Bekiros and Georgoutsos (2005)4. Neftci (2000) uses EVT to forecasting the tails of the 

distributions of interest rate and exchange rate changes and also obtains that extreme value 

theory provides much more accurate results than the standard value at risk calculated from the 
                                                
2 Longin (2000) compute the VaR of single and bivariate portfolio positions by applying the EVT methodology to 
S&P 500 index and the SBF 240 index. 
3 Assaf (2009) focuses on four emerging financial markets (Egypt, Jordan, Morocco and Turkey) to provide estimates 
of their tail index behaviour. 
4 In Bekiros and Georgoutsos (2008) the focus is on returns of the Dow Jones Industrial Average and the Cyprus 
Stock Exchange indices finding that at confidence levels higher (lower) than 99% the EVT-based methodology 
(conventional methods) produces the most accurate forecasts for extreme losses. 
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normal distribution. Danielsson and Morimoto (2000) apply EVT to Japanese financial data to 

confirm the accuracy and stability of this methodology over the GARCH-type techniques. 

McNeil and Frey (2000) combine fitting of GARCH models to estimate the current volatility 

and EVT for estimating the lower tail of the innovation distribution of the GARCH model. To 

backtest the method, they focus on the series of negative returns of the Standard and Poors 

index, the DAX index, the BMW share, the US dollar British pound exchange rate and the gold. 

Their approach outperforms both the unconditional EVT models and the GARCH models with 

normally distributed innovations and Student’s t-innovations. Following McNeil and Frey 

(2000), Byström (2004) and Fernández (2005) lead to similar results. The former focuses on the 

negative distribution tails of the Swedish AFF and the U.S. DOW indices to compare EVT with 

generalized ARCH approaches and finds EVT to be a generally superior approach above all for 

more extreme VaR quantiles. The latter, also focusing on the left tail of the distribution of 

returns, uses a sample comprised of several financial indices from the United States, Europe, 

Asia and Latin America and finds that conditional EVT gives the most accurate estimates when 

compared with traditional methods. Lee and Saltoglu (2001) concentrate on five Asian stock 

market indices and come to somewhat inconclusive results in the sense that conventional 

methods turn out to have more consistent performance but none of the methods used in that 

paper is shown to produce a superior VaR forecast. 

Bali and Neftci (2003) analyze the fluctuations of the maximal and minimal changes in short-

term interest rates and test the significance of time-varying paths followed by the mean and 

volatility of extremes. A conditional extreme value approach to calculating value at risk by 

specifying the location and scale parameters of the generalized Pareto distribution as a function 

of past information is proposed. Based on the estimated VaR thresholds, the statistical theory of 

extremes is found to provide more accurate estimates of the rate of occurrence and the size of 

extreme observations. Chavez-Demoulin et al. (2005) propose an approach that models within 

cluster behaviour, involving a self-exciting process for the exceedance times. More recently, 

Bali and Weinbaum (2007) introduce a conditional extreme value volatility estimator based on 
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high-frequency intraday returns and conclude that EVT provides more accurate forecasts than 

the implied volatility index and GARCH volatility models, and that implied volatility index 

generally yields a less accurate characterization of realized volatility than EVT and GARCH 

models. Finally, Bellini and Figà-Talamanca (2007) study the tail behaviour of eight major 

market indexes stratifying data according to the violation of a high threshold on the previous 

day. However, their results suggest that EVT-based methodologies are not sufficient 

conservative and produce too many violations5 which may be due, according to the authors, to 

the choice of the threshold after which the generalized Pareto distribution is fitted. 

Thus, while in some papers, the focus is on the marginal or unconditional distribution of the 

process, without accounting for the conditional heteroscedasticity of most financial data (e.g. 

Danielsson and de Vries, 2000; Longin, 2000; Bekiros and Georgoutsos, 2005; Gilli and 

Këllezi, 2006; Assaf, 2009) others employ a conditional EVT approach (e.g. McNeil and Frey 

(2000), Bali and Neftci (2003); Bali and Weinbaum (2007) and Bellini and Figà-talamanca 

(2007)). In this paper, we follow McNeil and Frey (2000) and proceed in two steps. First, we fit 

a GARCH-model to the return series with the aim of obtaining estimates of the conditional 

volatility. Second, we use the extreme value theory, in particular, the Peak Over Threshold 

(POT here on forth) approach, to estimate the distribution of the standardized normal residuals. 

In contrast to Normal and Student’s t distributions which are symmetric and therefore not able 

to capture differences between the upper and lower tails, the EVT estimator has the advantage 

of treating the tails separately. By applying the POT method to the standardized residuals from 

the normal GARCH model what we get are time-varying tail quantiles according to periods of 

high (low) volatility. Estimates of the tails of the residuals from models that assume normal- 

and Student’s t-distributed innovations are additionally presented for comparative purposes. It 

should be noted that Chavez-Demoulin et al (2005) claimed that one drawback of this 

methodology is the fact that, as being a two-stage procedure, the results of the EVT analysis 

would be sensitive to the fitting of the GARCH model to the dataset in the first stage. 

                                                
5 A violation is defined to be an extreme observation being not identified by a particular method. 
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This paper contributes to the literature by applying the methods proposed by McNeil and Frey 

(2000) to three financial indices representing the three main financial areas in the world, i.e., 

USA, UK and Japan, covering a sample period from 1987 (variable depending on the stock 

index) to 2011. Our sample extends that from McNeil and Frey (2000) focusing on two other 

relevant financial index such as FTSE 100 and NIKKEI 225. To do so, we are concerned not 

only with in-sample estimation but also and most relevant to portfolio  management, out-of-

sample one-day prediction. Furthermore, to address the previously mentioned supposed 

drawback of this methodology, we fit alternative GARCH model specifications in the first stage 

of the estimation and show that the EVT based method is able to identify extreme observations 

much better than the rest of the models involved in the present study, regardless the particular 

GARCH model selected to filter data.     

Also, apart from considering the lower tail of the distribution, which is the most frequent 

choice, we additionally analyze the upper tail of the distribution6. The reason is that the former 

represents losses for an investor with a long position in the financial index, whereas the latter 

represents losses for an investor being short on the index. Thereby, although throughout the 

paper we talk about tail quantile estimates, we distinguish between the lower and the upper tail, 

the lower tail quantiles estimates being direct VaR estimations, as usually defined in literature. 

Our empirical results evidence that the EVT provides a convenient framework for asymmetric 

properties in the distributions. This finding is important because asymmetry is often present in 

financial time series data. 

Finally, in order to deal with the controversial issue of the threshold choice (necessary to define 

an observation as extreme), we use the standard method based on the mean residual life plot. 

                                                
6 The upper tail of several securitized real estated and stock market returns is also analysed in Gilli and Këllezi 
(2006) and in Liow (2008). Gilli and Këllezi (op.cit.)) apply both the EVT Block Maxima and the Peak Over 
Threshold approaches to estimate both the left- and right-tail distribution of a set of financial series of returns. In 
contrast to our study, their aim is simply to illustrate such an estimation and not to make a comparative evaluation 
between different methodologies. Liow (op.cit.) models the maxima and minima of ten returns financial indices using 
the EVT Block Maxima approach, although the accuracy of the EVT estimates for the upper tail is not tested. The 
Block Maxima approach is different from the one chosen in this study, namely the Peak over Threshold. A brief 
explanation of the Block Maxima methodology and the reason of our choice is included in Section 3.  
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This graphical tool is frequently employed to determine the threshold directly from visual 

inspection. In this paper we additionally use the likelihood test ratio as a robustness check.  

The remainder of this paper is organized as follows. Section 2 describes and carries out a 

preliminary analysis of the data set. In Section 3 the theoretical framework of the extreme value 

theory as well as the methods proposed by McNeil and Frey (2000) called conditional EVT are 

presented. Section 4 is concerned with the estimation of the GARCH-type models and the fitting 

of the GPD model to standardized normal returns for each of the financial indices involved in 

this study. In section 5, tail quantile estimates are obtained by applying the different 

methodologies considered in this study with comparative purposes. The empirical exercise is 

divided into an in-sample and an out-of-sample estimation. Finally, section 6 summarises the 

results and concludes. 

 

2. Data 

The data used are the historical daily log return series on three financial indices referring to 

three relevant financial areas such as USA, UK and Japan. The selected financial indices are 

S&P 500, FTSE 100 and NIKKEI 225. Our sample respectively covers the following periods: 

December 4, 1987 to October 17, 2011; December 11, 1987 to October 17, 2011 and October 7, 

1987 to October 17, 2011. The data has been taken from the Reuters database. 

Table 1 reports some statistics on the log return series and the Ljung-Box test statistic for 

autocorrelation in returns and squared returns. As can be observed, all three series are stationary 

according to the Augmented Dickey Fuller statistics. Of note is the very high kurtosis and the 

negative value of skewness denoting wider lower tails. 

According to the Ljung-Box test, the log return series display strong autocorrelation with the 

only exceptions being the FTSE 100 and NIKKEI 225 log returns which are not autocorrelated 

of order one. Though not shown, they present autocorrelation up until any other lag exceeding 

one. From a visual inspection of Figures 1-3 a noticeable degree of volatility clustering can be 
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detected. To confirm such an intuition, the Ljung-Box test has been additionally applied to 

squared log returns. As can be observed in Table 1, the p-values for the Ljung-Box tests are 

below 0.05, indicating there is heteroscedasticity in the series. 

Thus, two stylized facts for return series are detected: (i) the nonnormality of the unconditional 

distribution of returns suggested by the commented values of kurtosis and skewness and 

evidenced by highly significant Jarque-Bera statistics7 and (ii) the time-varying volatility of 

returns indicated by the significant Ljung-Box test statistics showing strong autocorrelation in 

squared returns. 

[Insert Table 1 about here] 

[Insert Figure 1 about here] 

[Insert Figure 2 about here] 

[Insert Figure 3 about here] 

 

3. Methodology  

The extreme value theory8 relies on two main general definitions of extreme events. Following 

the so-called Block Maxima (BM) approach, data are taken to be the maxima (or minima) over 

certain blocks of time. In this context, it is appropriate to use the Generalized Extreme Value 

distribution. Instead, the Peak Over Threshold (POT) methodology considers as extreme those 

observations (Xi) that exceed a properly chosen high threshold u. These excesses, when 

independent, follow a Generalized Pareto Distribution. The BM approach compared to the POT 

approach presents a shortcoming: as just one extreme per block is chosen, completeness of the 

statistical population is not guaranteed. In fact, the former implies a loss of information that may 

be important, since the latter allows for more data to inform the analysis. Therefore, the 

                                                
7 The Jarque-Bera statistic is 2

2χ distributed under the null of normality. 
8 See Leadbetter et al. (1983), Embrechts et al. (1999) and Coles (2003) for more details of extreme value theory. 
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threshold method uses data more efficiently and, for that reason, it is the method of choice in 

this paper.  

Let X1, X2, … be a sequence of independent and identically distributed random variables, 

having marginal distribution function F. Under the POT approach, extremes are regarded as 

those of the Xi that exceed some high threshold u. If F were known, the distribution of threshold 

excesses would also be known. Since in practice this is not the case, approximations applicable 

for high values of the threshold are needed. According to Pickands (1975), for large enough u, 

the distribution function of y=X- u, conditional on X > u, belongs to the family of distributions 

called the generalized Pareto family and is approximately 
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threshold, σ is a scale parameter and ξ a shape parameter. 

H(y) gives the probability of a random variable exceeding a high value given that it already 

exceeds a high threshold, say u. Thus, y = X-u, may be regarded as independent realizations of a 

random variable whose distribution can be approximated by a member of the Generalized 

Pareto family. Inference consists of fitting the generalized Pareto family to the observed 

threshold excesses. The result, which is stated for maxima, can be applied to minima by taking 

the sequence –Xn instead of the sequence Xn (Coles, 2003). 

The threshold choice is controversial and, according to McNeil and Frey (2000), the most 

important implementation issue in EVT. So far, no automatic algorithm with satisfactory 

performance for the selection of the threshold u is available. If we choose too low a threshold 

we might get biased estimates because the limit theorems do not apply any more, while high 

thresholds generate estimates with high variance due to the limited number of observations. 

Thus, the issue of threshold choice implies a balance between bias and variance. 
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In this paper, the issue of threshold choice has been handled through the standard method based 

on the mean residual life plot (Davison and Smith, 1990). When applying this method, the 

choice of the threshold is frequently done directly from visual inspection (for instance, see Gilli 

and Këllezi, 2006, Coles, 2003); however, in this paper we use the likelihood test ratio as a 

robustness check. 

As indicated in the introduction, there are previous studies in the literature that apply EVT-

based methods directly to the series of returns, following the unconditional approach. However, 

the EVT requires the series to be identically and independently distributed (i.i.d.) and, given the 

conditional heteroscedasticity of most financial data, this approach is hardly appropriate. In fact, 

the presence of stochastic volatility implies that returns are not necessarily independent over 

time. Besides, financial time series generally show clusters of volatility. Therefore, we must 

look more carefully into the issue of de-clustering the extreme values so that they appear as 

approximately independent (McNeil, 1998).  

Thereby, following the methods proposed by McNeil and Frey (2000), we use historical 

simulation for estimating the conditional mean and volatility of the log return series and 

threshold methods from EVT to estimate the distribution of the residuals. Firstly, we need a 

particular model for the dynamics of the conditional mean and volatility in order to obtain iid 

residual series which EVT will be applied to. In this paper, three alternative GARCH model 

specifications for the three studied index series are chosen so as to pre-whiten the returns. We 

use maximum likelihood to estimate both the conditional mean and volatility from the 

corresponding GARCH-type model by assuming that the innovation distribution is standard 

normal. For comparative purposes we repeat the estimation procedure although this time 

considering that the distribution of the innovations is more heavier-tailed than is the normal, i.e. 

the Student’s t. 

To obtain conditional POT estimates, the standardized residuals resulting from fitting the 

GARCH-type model to the return data by quasi-maximum likelihood (that is, maximize the log-
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likelihood function of the sample assuming normal innovations9) are used to estimate the tails of 

innovations applying POT.  

Conditional 95%, 97.5%, 99% and 99.5% tail quantiles )( t
qz  of the financial index log return 

series are estimated by multiplying the corresponding GARCH volatilities with quantiles  from 

the standard normal, t-distribution and GPD (in this latter case by means of the application of 

the POT approach to standardized normal residuals) and adding the conditional mean return. 

 

4. Estimation Results   

In this section we present the GARCH-type models selected to capture the dependencies shown 

in the log return series as well as the corresponding estimation results. We fit a GARCH(1,1), 

EGARCH(1,1) and TGARCH(1,1) as three alternative GARCH specifications in order to check 

whether the EVT based estimation results appear to be robust, or whether contrarily, they are 

sensitive to the choice of the GARCH model. Then we apply the POT approach to the residuals 

from the GARCH model that assumes normal innovations by fitting the GPD to the excesses 

over a predetermined threshold, which can be different according to the series10.  

4.1. GARCH models  

When looking for the best fitted AR-GARCH model to data, differences in the dynamics of the 

considered index log return series such as volatility clustering or seasonality patterns need 

individual analysis. Our results indicate that autocorrelation in both the returns themselves and 

in the squared returns can be mostly removed by simply fitting a GARCH (1,1) model for all the 

financial indexes involved in the study, i.e. S&P 500, FTSE 100 and NIKKEI 225 indexes11. As 

previously mentioned, an EGARCH (1,1) and a TGARCH(1,1) models have also been fitted to 

                                                
9 Even if innovations are not truly normally distributed, this way of proceeding still provides consistent and 
asymptotically normal estimates (see for instance Engle and González-Rivera, 1991). 
10 The computations presented in this study are conducted by means of Eviews (first stage estimations) and R 
software (EVT estimations). 
11 In McNeil and Frey (2000) an AR(1) model for the mean and a GARCH(1,1) process for the volatility are used. 
AR(1), AR(24) and AR(168) terms combined with a GARCH(1,1) model are included in Byström(2005). 



 13 

data. Maximum likelihood estimates for each of the involved index series are reported in Table 

2. 

 [Insert Table 2 about here] 

Table 3 displays the descriptive statistics of the standardized normal residuals distinguishing 

between in-sample and out-of-sample estimation. Note that, in contrast to the log return series, 

the standardized residuals are approximately independent according to the Ljung-Box tests on 

the residuals and the squared residuals (in particular, Ljung-Box tests for one and ten lags are 

presented), since they indicate some remaining autocorrelation both for the returns in levels and 

for the squared returns at lag 10 just within the out-of-sample estimation for the S&P 500 index 

and also for the squared returns at lag 10 within the out-of-sample estimation for the NIKKEI 

225 index. 

[Insert Table 3 about here] 

4.2. POT methodology applied to the upper tail (maxima)  

Firstly, it is crucial the choice of a proper threshold so as to consider as extreme any observation 

exceeding it. According to the mean residual life plot, in which the mean excess over a 

threshold is potted as a function of the threshold itself, and to the test likelihood ratio, the 

threshold should be the one from which the linear model fits better than the quadratic one. 

Maximized value of the log likelihood for the quadratic and linear models together with 

deviance statistics calculated at different potential thresholds for each of the standardized 

residuals series from the GARCH (1,1) specifications12 are shown in Figures 4-6 and in Figures 

7-9 respectively for in-sample estimation and out-of-sample estimation. Thus, the thresholds for 

the in-sample estimation under the GARCH(1,1) specification, should be the following: *
&PSu = 

1.85, *
FTSEu = 1.42 and *

NIKKEIu = 2.26, considering as extreme values 3%, 7% and 1% of data, 

respectively. 

[Insert Figure 4 about here] 

                                                
12 Similar figures for the E-GARCH and T-GARCH specifications are available from the authors upon request. 
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[Insert Figure 5 about here] 

[Insert Figure 6 about here] 

Much more interesting than in-sample estimation is out-of-sample estimation, as the latter 

allows us to forecast tail estimates. Thus, we fix a constant memory n (n=1001 in our case) so 

that at the end of day t our data consist of the last 1001 log returns. On each day we fit a new 

GARCH model to capture the dynamics of the three studied indices. The next step is to obtain 

the quantile estimates from the GPD by fitting this distribution to the excesses of the new 

standardized normal residuals over the corresponding thresholds which are fixed by applying 

the method based on the mean residual life plot. Finally, we calculate the EVT conditional 

quantile estimates by multiplying the new estimated GARCH volatilities with quantiles from the 

standard normal, t-distribution and GPD (in this latter case by means of the application of the 

POT approach) and adding the new estimated conditional mean returns. 

The thresholds suggested by the mean-residual-life-plot method and reinforced by the test 

likelihood ratio, under the GARCH(1,1) specification13, for the out-of-sample estimation are 

displayed in Figures 7-9. Thus, these thresholds are *
&PSu = 0.55, *

FTSEu = 2.10 and *
NIKKEIu = 

2.26, considering as extreme values 26%, 1% and 1% of data, respectively.  

[Insert Figure 7 about here] 

[Insert Figure 8 about here] 

[Insert Figure 9 about here] 

From a visual inspection of mean life residual plots, the selected thresholds are around the 

lowest values of u for which the mean residual life plots seem to be linearly related to the 

corresponding potential thresholds, so that we conclude that the selected thresholds do not seem   

unreasonable. 

The excesses over the selected thresholds are fitted to the GPD in each case. Parameters under 

the in-sample and out-of-sample estimation have been estimated by maximum likelihood and 
                                                
13 Similar figures for the E-GARCH and T-GARCH specifications are available from the authors upon request. 
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are shown respectively in Tables 4 and 5. Also, the corresponding thresholds are shown.  For 

instance, under the EGARCH specification, within the in-sample estimation, we obtain the 

estimates 170.0ˆ −=ξ (-0.047, 0.024) and 638.0ˆ =σ  (0,679, 0,628) for the S&P 500 (FTSE 

100, NIKKEI 225) index. On the other hand, under the TGARCH specification, within the out-

of-sample estimation, we obtain the estimates 277.0ˆ −=ξ  (0.102, 0,161) and 593.0ˆ =σ  

(0.364, 0.541) for the S&P 500 (FTSE 100, NIKKEI 225) index.  

 [Insert Table 4 about here] 

[Insert Table 5 about here] 

4.3. POT methodology applied to the lower tail (minima) 

One of the advantages of the GPD approach to tail estimation is the fact that it allows for the 

handling of upper and lower tails separately. Thus, the threshold level finally chosen depends on 

the particular series and the number of data exceeding the corresponding threshold is logically 

different according to this threshold level, In contrast, normal and Student’s t symmetric 

distributions are unable to capture any difference between them since both tails are assumed to 

present identical characteristics.  

Similarly to the upper tail, the mean residual life plots together with some deviance statistics 

calculated at several thresholds are shown in Figures 10-12 and in Figures 13-15, respectively, 

within the in-sample and out-of-sample estimation under the GARCH(1,1) specification14. Thus, 

within the in-sample estimation, the thresholds suggested by the mean residual life plot method 

together with the ratio likelihood test are *
&PSu = -2.01, *

FTSEu = -2.45 and *
NIKKEIu = -2.76, 

leaving 2%, 1% and 4% of data below each of them, respectively. As can be observed, most of 

the selected thresholds for the lower tail are greater, in absolute value, than the ones for the 

upper tail, which is a sign of asymmetry in the series. The corresponding GPD parameter 

estimates are displayed in Table 4. Since the shape parameter, ξ, gives an indication of the 

heaviness of the tail (the larger ξ, the heavier the tail), results lead us to conclude that the lower 

                                                
14 Similar figures for the E-GARCH and T-GARCH specifications are available from the authors upon request. 
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tail of the standardized normal residuals distribution is heavier than the upper tail for the three 

financial indices considered in the study, with the exceptions of the S&P 500 and FTSE 100 

when the TGARCH specification is used.  

[Insert Figure 10 about here] 

[Insert Figure 11 about here] 

  [Insert Figure 12 about here] 

Under the out-of-sample estimation, however, the thresholds for the GARCH(1,1) specification 

should be *
&PSu = -2.46, *

FTSEu = -2.74 and *
NIKKEIu = -1.85, leaving 3.0%, 1.2% and 0.6% of data 

above each of them, respectively. These thresholds together with GPD parameter estimates are 

shown in Table 5. The asymmetry of the distribution is again evidenced by comparing the upper 

and lower tails in terms of the estimated shape parameters and thresholds. On the one hand, the 

estimated thresholds for the lower tail within the out-of-sample estimation are always higher, in 

absolute value, than the ones for the upper tail with the exceptions being the NIKKEI 225 under 

both the GARCH and EGARCH specification. On the other hand, regarding the estimated shape 

parameters, the results obtained from the in-sample estimation generally remain constant under 

the out-of-sample estimation except for the FTSE 100 index that exhibits shape parameters for 

the upper tail higher than the ones for the lower tail, meaning that, in this case, the upper tail is 

heavier than the lower tail. 

[Insert Figure 13 about here] 

[Insert Figure 14 about here] 

[Insert Figure 15 about here] 

Similarly to the in-sample estimation, from a visual inspection of mean life residual plots, the 

selected thresholds are around the lowest values of u for which the mean residual life plots seem 

to be linearly related to the corresponding potential thresholds, so that we consider the selected 

thresholds acceptable.  
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5. Tail quantile calculations and backtesting 

The estimates from the previous section allow us to compute the series of conditional tail 

quantiles by multiplying the estimated conditional volatility with the quantiles of the normal 

distribution, the t-distribution or the generalized Pareto distribution and finally adding the 

estimated conditional mean. 

The accuracy of the estimates under the distributions considered in the present study can be 

assessed by counting the number of actual returns that are larger than the estimated tail quantile 

and comparing this figure with the theoretically expected number of excesses for a determined 

probability15. Of course, the closer the empirically observed number of excesses is to the 

theoretically expected amount, the more preferable the method is for estimating the tail 

quantiles. 

As a first step, we carry out an in-sample evaluation mainly to investigate the fit of the models 

to extreme data, followed by an out-of-sample evaluation to test how well future extreme 

movements can be predicted, the latter being of greater concern to risk managers.  

5.1. In Sample Evaluation 

Table 6 presents the number of excesses for both tails at different quantiles associated with each 

of the involved distributions, together with the theoretically expected number of excesses for the 

S&P 500 (Panel A), FTSE 100 (Panel B) and NIKKEI 225 (Panel C) indices. Also reported (in 

brackets) is the p-value for the binomial test developed by McNeil and Frey (2000) of the 

success of these quantile estimation methods. This test is based on the number of violations 

defined as the difference between the theoretically expected and the estimated excesses. It is a 

two-sided binomial test of the null hypothesis that a method correctly estimates the conditional 

quantiles against the alternative that a method has a systematic estimation error and gives too 

few or too many violations. A p-value less than or equal to 0.05 will be interpreted as evidence 

                                                
15 For example, the expected number of excesses of a 95% tail quantile over a sample of 6020 observations is 301 (

)602005.0 ⋅ . 
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against the null. To help the reader with the comparison, closer numbers of estimated excesses 

to theoretically expected ones are highlighted in bold.  

As can be observed in Table 6, the results do indicate that the EVT-based approach is the most 

successful for capturing the behaviour of the upper tail of the S&P 500 at all the considered 

levels of probabilitiy since in all the cases (including the GARCH(1,1), EGARCH(1,1) and 

TGARCH(1,1) specifications) the conditional GPD approach correctly estimates the conditional 

quantiles according to the binomial test and in 11 out of 12 cases it is the closest to the 

benchmark. On no occasion does this approach fail. In contrast, the conditional normal (t) 

approach fails in 5 (9) out of 12 cases. Regarding the FTSE 100, the conditional GPD approach 

correctly estimates the conditional quantiles in 7 out of 12 cases whereas the conditional normal 

(t) does in 5 (4) out of 12 cases. Finally, for the NIKKEI 225, the EVT-based estimated 

conditional quantiles would be correct in 8 out of 12 cases, being so in 6 (3) out of 12 cases for 

the normal (t) approach. 

Moving to the lower tail, the conditional GPD approach correctly estimates the conditional 

quantiles for the S&P 500 in 10 out of 12 cases, being closest to the mark in 8 out of these 10 

cases (in one case the EVT and the conditional t approaches are joint best). The corresponding 

figures for the normal and the t are, respectively, 7 and just 4 out of 12 cases. Similar results are 

obtained for the FTSE 100. Finally, the conditional GPD and the t approach under any of the 

three GARCH specifications provide similar results for the lower tail of the NIKKEI 225. They 

would be correctly estimating in 9 out of 12 cases each, both being closest to the mark in 5 out 

of the 12 cases, whereas the normal approach would only provide correct estimates in 3 out of 

12 cases.  

  

[Insert Table 6 about here] 

5.2. Out-of-sample evaluation 
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Within the out-of-sample estimation (Table 7), results indicate that the GPD conditional 

quantile estimates are even better than within the in-sample analysis. In fact, for both the upper 

and lower tails, they would be correctly estimated according to the binomial test in 20 (22, 16) 

out of 24 cases for the S&P 500 (FTSE 100, NIKKEI 225), being more accurate than the 

conventional GARCH models assuming normal- or Student’s t-innovations in 18 (21, 12) out of 

24 cases. 

 Of note are the results for the lower tail of the S&P 500. Whereas the GPD conditional 

quantiles would be correctly estimated in 9 out of 12 cases, these figures contrast with the ones 

for the normal approach which fails in all the cases and with the t approach which correctly 

estimates the conditional quantiles in just 1 out of 12 cases. Our results for the lower tail of the 

FTSE 100 give even stronger support to the conditional GPD approach since it provides 

correctly estimated conditional quantiles in 11 out of 12 cases and they are always closest to the 

theoretical mark. On the other hand, just in 4 (2) out of 12 cases the conditional normal (t) 

returns correctly estimates according to the binomial test. With regards to the lower tail of 

NIKKEI 225, in spite of the fact that GPD conditional quantile estimates are, according to the 

binomial test, correctly estimated in 10 out of 12 cases, however, in this case, the conditional t 

approach does perform quite well too, providing correct estimations in 8 out of 12 cases. The 

conditional normal approach provides correct quantile estimates in just 3 out of 12 cases.  

 

 [Insert Table 7 about here] 

On the other hand, at most of the considered confidence levels, both for the in-sample and the 

out-of-sample estimation, the GARCH models combined with normal or Student’s t-innovations 

underestimate the upper tail and overestimate the lower tail. This is the consequence of using a 

symmetric distribution with data which are asymmetric in the tails. In this sense, it should be 

pointed out that the alternative GARCH-type specifications considered in this study, i.e. the 

EGARCH(1,1) and the TGARCH (1,1), differ from the GARCH(1,1) in that they are able to 

capture an asymmetric behaviour of the conditional volatility meaning that a negative shock 
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leads to a relatively higher conditional variance than a positive shock. However, there is no 

evidence for any substantial difference between the EVT empirical results resulting from fitting 

alternative GARCH-type specifications to data in the first stage of the empirical exercise. This 

finding is important because one drawback that has been argued against this methodology was 

the fact that the empirical results were sensitive to the particular GARCH specification used to 

pre-whiten the residuals. We have employed three alternative GARCH specifications in the first 

stage and obtain a better performance of the EVT-based approach in most of the cases, 

regardless the GARCH specification finally chosen, what may lead us to conclude that the 

second stage EVT results in detecting extreme observations are robust. 

As an example, backtesting from January 4, 2010 to October 17, 2011 for the FTSE 100 index  

within the out-of-sample estimation is graphically illustrated in Figure 16. It shows the negative 

log returns, the GPD, Normal and t conditional quantile estimates at the 99 per cent of 

probability.  

 

  [Insert Figure 16 about here] 

6. Concluding remarks 

In this paper we follow McNeil and Frey´s (2000) two-step estimation procedure (conditional 

EVT) with the aim of comparing this methodology with other conventional methods such as 

those that combine GARCH models with Student’s t or normal distributions for tail estimation 

of financial data. In step one, we fit a GARCH-type model to the return data by maximizing the 

log-likelihood function of the sample assuming normal innovations. In step two, the EVT (in 

particular, the POT approach) is used to estimate the tails of innovations. 

One criticism of this methodology that was pointed out by Chavez-Demoulin et al. (2005) is 

that, as being a two-stage procedure, the results of the EVT analysis are sensitive to the fitting 

of a GARCH model in the first stage. In order to address this issue, we fit alternative GARCH 

specifications so as to compare the estimation results. Specifically, we test the conditional EVT 
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approach  and the above mentioned traditional methods under a GARCH(1,1), EGARCH(1,1) 

and TGARCH(1,1) specifications by applying them to the log return series of S&P 500, FTSE 

100 and NIKKEI 225 stock indices. Both in-sample and out-of-sample estimations are 

conducted. 

According to our results, within the in-sample estimation, the EVT methodology generally 

produces the most accurate estimates of the three considered financial indices. But more 

interestingly for a risk manager, whose aim is to know how well she is able to predict future 

extreme events rather than to model the past, the superiority of the conditional EVT 

methodology over the other two conventional methods is clearly evidenced under the out-of-

sample estimation. 

Thus, the better performance of the conditional EVT tail estimates is confirmed for both the 

upper and the lower tails, within in- and out-of-sample estimation, since, according to the 

binomial test proposed by McNeil and Frey (2000), it provides correct estimations in 56 (58) 

out of 72 cases for the upper (lower) tail, contrasting with the 39 (22) of the conditional normal 

or the 23 (28) of the conditional t. No evidence of any difference in the conditional EVT 

quantile estimates due to the particular GARCH specification is found. Then, despite the 

claimed drawback of the methodology used in this paper, the empirical results are shown to be 

robust. Such results have been achieved when applied to the extreme returns for the three 

financial indices involved in this study, and by extension, it may be applied to other financial 

assets. In fact, these financial indices were chosen because they can be considered as 

representative of three important financial areas and no remarkable differences in terms of the 

accuracy of the estimates have arisen between them. 

To conclude, on the one hand the results found in this paper should be useful to investors in 

general, since their goal is to be able to forecast unforeseen price movements and take 

advantage of them by positioning themselves in the market according to these predictions. On 

the other hand, precise (out-of-sample) predictions of the probability of extreme returns are of 
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great importance for risk traders who implement dynamic portfolio hedging and need to design 

active strategies on a daily basis. 
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Table 1. Descriptive Statistics 
 

Log returns on S&P 500, FTSE 100 and NIKKEI 225. ADF is the 
Augmented Dickey Fuller test statistic (without trend) and the 99% 
critical value is -3.43. Q(1) [Q2(1)] and Q(10) [Q2(10)] are the 
Ljung-Box tests for autocorrelation at lags 1 and 10 in the log 
return series [in the squared log return series], their p-values are 
shown. A p-value less than or equal to 0.05 is interpreted as 
evidence against the null hypothesis that there is no autocorrelation 
up to lag shown in parenthesis. ** (*) denotes statistical 
significance at 1% (5%) level. 

 
 S&P 500 FTSE 100 NIKKEI 225 

Range Dates 12/4/1987  
10/17/2011 

12/11/1987 
10/17/2011 

10/7/1987 
10/17/2011 

N. Obs. 6020 6015 5913 

Mean (%) 0.0002 0.0001 0.0001 

Median (%) 0.0005 0.0004 0.00004 

Standard Deviation (%) 0.0116 0.0113 0.0153 

Minimum -0.0946 -0.0926 -0.1613 

Maximum 0.1095 0.0938 0.1323 

Skewness -0.2889 -0.1321 -0.2642 

Kurtosis 11.63298 9.1194 11.71 

Jarque-Bera  
(p-value) 

1877.8 
(0.0000) 

9401.3 
(0.0000) 

14723 
(0.0000) 

 t-statistic 

ADF -59.19** -34.82** -58.29** 

 p-value 

Q(1) 0.00* 0.402 0.087 

Q(10) 0.00* 0.00* 0.00* 

Q2(1) 0.00* 0.00* 0.00* 

Q2(10) 0.00* 0.00* 0.00* 



 26 

Table 2. Alternative GARCH Models 
 

Panel A, B, C and D display GARCH(1,1), EGARCH(1,1) and TGARCH (1,1) 
parameters estimates for the S&P 500, FTSE 100 and NIKKEI 225 indices. d.f. is 
degrees of freedom. * (**) denotes statistical significance at a 1% (5%) level.  
 

 
 
 

 

GARCH(1,1) 

 

 

EGARCH(1,1) 

 

log(σ t
2 )=α0 +α1 ⋅

εt−1
σ t−1

+α2 ⋅
εt−1
σ t−1

+β1 ⋅ log(σ t
2 )

 

TGARCH(1,1) 

 

σ t
2 =α0 +α1 ⋅εt−1

2 +α2 ⋅εt−1
2 ⋅dt−1 +β1 ⋅σ t−1

2

 

  Normal  Student´s t   Normal  Student´s t    Normal  Student´s t  

Panel A: S&P 500  

 4.89E04* 6.31E04*  2.22E04** 4.19E04*  2.62E04** 4.56E04* 

 1.00E-06* 5.57E-07*  -0.2266* -0.1864  1.30E-06* 8.68E-07* 

 0.0635* 0.0597*  0.1072* 0.1075*  0.0212** 0.0146** 

   α2  -0.0868 -0.0905* α2  0.1022* 0.1048* 

 0.9286* 0.9376*  0.9843* 0.9889  0.9334* 0.9369* 

d.f.  6.2119* d.f.  6.7592* d.f.  6.7971* 

Panel B: FTSE 100 

 4.11E04* 4.77E04*  2.70E04** 2.57E04**  1.99E04** 2.81E04* 

 1.27E-06* 1.15E-06*  -0.2237* -0.2126*  1.36E-06* 1.26E-06* 

 0.0848* 0.0787*  0.1306* 0.1248*  0.0217* 0.0162* 

   α2  -0.0700* -0.0737 α2  0.0882 0.0923 

 0.9054* 0.9120*  0.9869* 0.9877*  0.9207* 0.9244* 

d.f.  12.7905* d.f.  14.1443* d.f.  13.4661* 

Panel C: NIKKEI 225 

 4.91E04* 4.06E04*  3.42E04** 3.17E04**  2.07E04** 2.76E04** 

 2.63E-06* 1.87E-06*  -0.3530* -0.3115*  3.09E-06* 2.44E-06* 

 0.1102* 0.0964*  0.1741* 0.1605*  0.0314* 0.0275* 

   α2  -0.1055 -0.0980 α2  0.1427* 0.1272 

 0.8846* 0.9003*  0.9746* 0.9785*  0.8868* 0.8996* 

d.f.  7.6088* d.f.  8.8466* d.f.  8.4533* 

tttX εσφ += 0

2
11

2
110

2
−− ++= tt σβεαασ

tttX εσφ += 0 tttX εσφ += 0

0φ 0φ 0φ

0α 0α 0α

1α 1α 1α

1β 1β 1β

0φ 0φ 0φ

0α 0α 0α

1α 1α 1α

1β 1β 1β

0φ 0φ 0φ

0α 0α 0α

1α 1α 1α

1β 1β 1β



Table 3. Descriptive Statistics of standardized normal residuals 
 

IS and OS are in-sample and out-of-sample estimation. Q(1) [Q2(10)] and Q(10) [Q2(10)] are the Ljung-Box tests for 
autocorrelation at lags 1 and 10 in the log return series [in the squared log return series], their p-values are shown. A p-
value less than or equal to 0.05 is interpreted as evidence against the null hypothesis that there is no autocorrelation up to 
lag shown in parenthesis. * denotes statistical significance at a 5% level, indicating significant serial correlation in the 
residuals. 

 
 S&P500 FTSE 100 NIKKEI 225 

 GARCH EGARCH TGARCH GARCH EGARCH TGARCH GARCH EGARCH TGARCH 

 IS OS IS OS IS OS IS OS IS OS IS OS IS OS IS OS IS OS 

Mean (%)  -0.02  -0.02 0.002 0.008  -0.002 0.006  -0.02  -0.02 0.002 0.006  -0.001 0.004  -0.05  -0.05  -0.01  -0.009  -0.02  -0.01 

Median (%) 0.01 0.01 0.04 0.04  0.03 0.04 0.005 0.007 0.03 0.03 0.03 0.03  -0.03  -0.03 0.001 0.006  -0.003 0.004 

St.Dev. (%)  0.99  1.01  1.00  1.04  1.00  1.03  1.00  1.00  1.00  1.03  1.00  1.01  1.00  1.01  1.00  1.00  1.003  1.01 

Maximum  4.11 3.41 3.53 4.41 3.78 3.46 6.01 6.21 5.86 6.23 6.18 6.28 6.26 7.44 5.74 5.86 6.04 6.42 

Minimum  -9.85  -7.27  -9.65  -7.99  -9.97  -7.44  -4.91  -4.72  -5.33  -5.47 -5.50  -5.99  -11.41  -7.13  -10.69  -6.75  -10.70  -6.95 

Skewness  -0.55  -0.45  -0.55  -0.47 -0.57  -0.468  -0.21  -0.21  -0.18  -0.21  -0.19  -0.24  -0.41  -0.15  -0.29  -0.13  -0.33  -0.14 

Kurtosis  6.27  4.95  6.05  5.00  6.28  4.95  3.79  3.89  3.76  3.95  3.84  4.01  7.30  5.01  6.25  4.59  6.44  4.66 

Q(1) 0.39 0.28 0.39 0.29 0.51 0.48 0.24 0.35 0.21 0.35 0.24 0.48 0.40 0.56 0.47 0.28 0.38 0.49 

Q(10) 0.07 0.03* 0.11 0.03* 0.15 0.55 0.38 0.15 0.40 0.14 0.43 0.21 0.36 0.27 0.28 0.40 0.30 0.46 

Q2(1) 0.52 0.48 0.17 0.09 0.08 0.05 0.38 0.99 0.76 0.60 0.39 0.49 0.22 0.36 0.57 0.58 0.96 0.55 

Q2(10) 0.64 0.03* 0.66 0.00* 0.84 0.04* 0.51 0.07 0.34 0.07 0.45 0.51 0.96 0.97 0.99 0.01* 0.99 0.41 

 



Table 4. Threshold and In-sample estimation 
 

Panel A, B, C respectively show as in-sample maximum likelihood 
GPD parameter estimates (with standard errors in parenthesis) and 
threshold values for both tails of the standardized normal residuals 
distribution of the S&P 500, FTSE 100 and NIKKEI 225 indices. 

 
 GPD parameters estimates 
 Upper tail Lower tail 
 GARCH EGARCH TGARCH GARCH EGARCH TGARCH 
 Panel A: S&P 500 
σ 0.467 

(0.04) 
0.638 
(0.02) 

0.579 
(0.02) 

0.541 
(0.05) 

0.516 
(0.06) 

0.577 
(0.02) 

ξ -0.100 
(0.07) 

-0.170 
(0.02) 

-0.144 
(0.02) 

0.211 
(0.08) 

0.272 
(0.09) 

-0.146 
(0.02) 

u 1.85 0.87 1.06 2.01 2.07 1.15 
 Panel B: FTSE 100 
σ 0.380 

(0.02) 
0.679 
(0.13) 

0.557 
(0.11) 

0.602 
(0.09) 

0.617 
(0.12) 

0.528 
(0.03) 

ξ 0.082 
(0.05) 

-0.047 
(0.11) 

0.045 
(0.13) 

0.083 
(0.11) 

-0.037 
(0.14) 

0.024 
(0.05) 

u 1.42 2.41 2.47 2.45 2.54 1.56 
 Panel A: NIKKEI 225 
σ 0.718 

(0.14) 
0.628 
(0.13) 

0.464 
(0.03) 

0.490 
(0.14) 

0.451 
(0.05) 

0.419 
(0.05) 

ξ 0.006 
(0.13) 

0.024 
(0.15) 

0.007 
(0.04) 

0.536 
(0.27) 

0.213 
(0.08) 

0.294 
(0.10) 

u 2.26 2.41 1.36 2.76 2.02 2.20 
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Table 5. Threshold and Out-of-sample estimation 
 

Out-of-sample maximum likelihood GPD parameter estimates (with 
standard errors in parenthesis) for both tails of the standardized normal 
residuals distribution. Panel A, B, C respectively shows the estimates 
for the S&P 500, FTSE 100 and NIKKEI 225 indices. 

 
 GPD parameters estimates 
 Upper tail Lower tail 
 GARCH EGARCH TGARCH GARCH EGARCH TGARCH 
 Panel A: S&P 500 
σ 0.749 

(0.02) 
0.601 
(0.02) 

0.593 
(0.05) 

0.580 
(0.09) 

0.755 
(0.10) 

0.545 
(0.16) 

ξ -0.202 
(0.02) 

-0.132 
(0.02) 

-0.277 
(0.06) 

0.170 
(0.11) 

0.054 
(0.09) 

0.363 
(0.25) 

u 0.55 1.08 1.75 2.46 2.33 3.00 
 Panel B: FTSE 100 
σ 0.3558 

(0.07) 
0.309 
(0.03) 

0.364 
(0.02) 

0.575 
(0.12) 

0.521 
(0.07) 

0.543 
(0.06) 

ξ 0.273 
(0.17) 

0.230 
(0.08) 

0.102 
(0.05) 

-0,091 
(0.15) 

0.092 
(0.10) 

0.074 
(0.09) 

u 2.10 1.71 1.49 2.74 2.08 1.98 
 Panel A: NIKKEI 225 
σ 0.591 

(0.13) 
0.856 

(0.198) 
0.541 
(0.09) 

0.518 
(0.05) 

0.383 
(0.062) 

0.466 
(0.08) 

ξ 0.176 
(0.17) 

-0.090 
(0.16) 

0.161 
(0.14) 

0.123 
(0.07) 

0.258 
(0.12) 

0.205 
(0.13) 

u 2.26 2.43 2.11 1.85 2.27 2.39 
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Table 6. In sample evaluation 
 

In sample evaluation of estimated (positive and negative) tail quantiles 
at different probabilities for the S&P 500, FTSE 100 and NIKKEI 225 
indices (Panel A, B and C). Closer numbers of estimated excesses to 
theoretically expected ones are highlighted in bold. The binomial 
probability of statistical difference between violations are in 
parenthesis. 

 
  Panel A: S&P 500 

  Upper tail Lower tail 

Prob. Expected GARCH GARCH-t Cond. GPD GARCH GARCH-t Cond. GPD 

0.95 301 252 (0.00) 275 (0.13) 301 (1.00) 311 (0.55) 359 (0.00) 257 (0.00) 

0.975 151 120 (0.01) 119 (0.00) 153 (0.84) 192 (0.00) 159 (0.48) 160 (0.43) 

0.99 60 56 (0.65) 25 (0.00) 59 (0.95) 121 (0.00) 42 (0.02) 54 (0.48) 

0.995 30 29 (0.93) 7 (0.00) 27 (0.65) 70 (0.00) 13 (0.00) 27 (0.65) 

  EGARCH EGARCH-t Cond. GPD EGARCH EGARCH-t Cond. GPD 

0.95 301 269 (0.06) 291 (0.57) 301 (1.00) 307 (0.70) 352 (0.00) 259 (0.01) 

0.975 151 118 (0.00) 121 (0.01) 138 (0.32) 171 (0.09) 182 (0.01) 148 (0.9) 

0.99 60 59 (0.95) 23 (0.00) 59 (0.95) 105 (0.00) 69 (0.24) 60 (1.00) 

0.995 30 23 (0.23) 9 (0.00) 23 (0.23) 70 (0.00) 35 (0.36) 27 (0.65) 

  TGARCH TGARCH-t Cond. GPD TGARCH TGARCH-t Cond. GPD 

0.95 301 255 (0.00) 277 (0.16) 299 (0.93) 286 (0.39) 346 (0.00) 296 (0.76) 

0.975 151 120 (0.01) 117 (0.00) 151 (0.97) 139 (0.36) 146 (0.74) 146 (0.74) 

0.99 60 60 (1.00) 25 (0.00) 60 (0.79) 67 (0.36) 31 (0.00) 59 (0.95) 

0.995 30 25 (0.41) 7 (0.00) 24 (0.52) 31 (0.85) 9 (0.00) 23 (0.23) 
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Table 6. In sample evaluation (continued) 
 
 

  Panel B: FTSE 100 

  Upper tail Lower tail 

Prob. Expected GARCH GARCH-t Cond. GPD GARCH GARCH-t Cond. GPD 

0.95 301 223 (0.00) 233 (0.00) 314 (0.42) 331 (0.08) 352 (0.00) 368 (0.00) 

0.975 150 87 (0.00) 89 (0.00) 160 (0.41) 180 (0.02) 187 (0.00) 164 (0.26) 

0.99 60 41 (0.01) 32 (0.00) 56 (0.65) 101 (0.00) 84 (0.00) 59 (0.95) 

0.995 30 29 (0.93) 22 (0.17) 30 ( 1.00) 62 (0.00) 48 (0.00) 33 (0.58) 

  EGARCH EGARCH-t Cond. GPD EGARCH EGARCH-t Cond. GPD 

0.95 301 244 (0.00) 253 (0.00) 1117 (0.00) 319 (0.27) 335 (0.04) 437 (0.00) 

0.975 150 96 (0.00) 98 (0.00) 464 (0.00) 169 (0.13) 176 (0.04) 210 (0.00) 

0.99 60 49 (0.17) 34 (0.00) 85 (0.00) 89 (0.00) 71 (0.15) 63 (0.70) 

0.995 30 32 (0.71) 25 (0.45) 33 (0.58) 54 (0.00) 41 (0.05) 30 (1.00) 

  TGARCH TGARCH-t Cond. GPD TGARCH TGARCH-t Cond. GPD 

0.95 301 236 (0.00) 250 (0.00) 508 (0.00) 314 (0.42) 332 (0.07) 304 (0.84) 

0.975 150 94 (0.00) 94 (0.00) 211 (0.00) 162 (0.34) 170 (0.11) 151 (0.93) 

0.99 60 47 (0.09) 37 (0.09) 59 (0.95) 94 (0.00) 73 (0.10) 61 (0.9) 

0.995 30 33 (0.85) 24 (0.31) 33 (0.85) 61 (0.00) 41 (0.05) 32 (0.71) 

 



 32 

Table 6. In sample evaluation (continued) 
 
 

  Panel C: NIKKEI 225 

  Upper tail Lower tail 

Prob. Expected GARCH GARCH-t Cond. GPD GARCH GARCH-t Cond. GPD 

0.95 301 215 (0.00) 245 (0.00) 722 (0.00) 340 (0.00) 361 (0.00) 129 (0.06) 

0.975 150 94 (0.00) 102 (0.00) 279 (0.00) 184 (0.00) 182 (0.00) 96 (0.00) 

0.99 60 48 (0.17) 35 (0.00) 62 (0.69) 95 (0.00) 57 (0.84) 52 (0.39) 

0.995 30 34 (0.41) 21 (0.14) 30 (0.92) 55 (0.00) 26 (0.58) 28 (0.85) 

  EGARCH EGARCH-t Cond. GPD EGARCH EGARCH-t Cond. GPD 

0.95 301 243 (0.00) 252 (0.00) 431 (0.00) 298 (0.88) 323 (0.11) 252 (0.00) 

0.975 150 111 (0.00) 111 (0.00) 172 (0.04) 154 (0.59) 155 (0.53) 149 (0.9) 

0.99 60 58 (0.95) 43 (0.04) 56 (0.74) 91 (0.00) 53 (0.47) 53 (0.47) 

0.995 30 40 (0.06) 27 (0.71) 28 (0.85) 48 (0.00) 27 (0.71) 26 (0.58) 

  TGARCH TGARCH-t Cond. GPD TGARCH TGARCH-t Cond. GPD 

0.95 296 236 (0.00) 256 (0.02) 308 (0.46) 319 (0.00) 352 (0.00) 212 (0.00) 

0.975 148 103 (0.00) 103 (0.00) 143 (0.74) 163 (0.21) 161 (0.28) 136 (0.36) 

0.99 59 57 (0.84) 39 (0.00) 52 (0.39) 93 (0.00) 57 (0.84) 56 (0.74) 

0.995 30 37 (0.16) 26 (0.58) 31 (0.78) 53 (0.00) 29 (1.00) 28 (0.85) 
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Table 7. Out-of-sample evaluation 
 

Out-of-sample evaluation of estimated (positive and negative) tail 
quantiles at different confidence levels for the S&P 500, FTSE 100 and 
NIKKEI 225 indices ((Panel A, B and C). Closer numbers of estimated 
excesses to theoretically expected ones are highlighted in bold. The 
binomial probability of statistical difference between violations are in 
parenthesis. 

 
  Panel A: S&P 500 

  Upper tail Lower tail 

Prob. Expected GARCH GARCH-t Cond. GPD GARCH GARCH-t Cond. GPD 

0.95 251 215 (0.02) 243 (0.63) 236 (0.35) 273 (0.00) 310 (0.00) 193 (0.00) 

0.975 125 109 (0.02) 110 (0.17) 120 (0.65) 174 (0.00) 172 (0.00) 124 (0.93) 

0.99 50 54 (0.57) 31 (0.00) 49 (0.94) 113 (0.00) 76 (0.00) 49 (0.94) 

0.995 25 33 (0.13) 7 (0.00) 29 (0.42) 77 (0.00) 33 (0.13) 23 (0.76) 

  EGARCH EGARCH-t Cond. GPD EGARCH EGARCH-t Cond. GPD 

0.95 251 259 (0.60) 290 (0.01) 258 (0.65) 281 (0.00) 320 (0.00) 276 (0.10) 

0.975 125 120 (0.65) 119 (0.59) 120 (0.65) 166 (0.00) 167 (0.00) 131 (0.62) 

0.99 50 65 (0.04) 34 (0.02) 47 (0.72) 112 (0.00) 81 (0.00) 49 (0.94) 

0.995 25 33 (0.13) 7 (0.13) 23 (0.76) 81 (0.00) 43 (0.00) 24 (0.92) 

  TGARCH TGARCH-t Cond. GPD TGARCH TGARCH-t Cond. GPD 

0.95 251 244 (0.67) 280 (0.06) 291 (0.01) 281 (0.00) 317 (0.00) 122 (0.00) 

0.975 125 113 (0.67) 116 (0.42) 119 (0.59) 172 (0.00) 181 (0.00) 87 (0.00) 

0.99 50 69 (0.01) 32 (0.00) 53 (0.67) 113 (0.00) 74 (0.00) 47 (0.72) 

0.995 25 32 (0.16) 5 (0.00) 28 (0.55) 73 (0.00) 37 (0.02) 24 (0.92) 
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Table 7. Out-of-sample evaluation (continued) 
 

 
  Panel B: FTSE 100 

  Upper tail Lower tail 

Prob. Expected GARCH GARCH-t Cond. GPD GARCH GARCH-t Cond. GPD 

0.95 251 195 (0.00) 202 (0.00) 181 (0.00) 275 (0.12) 288 (0.02) 256 (0.72) 

0.975 125 80 (0.00) 82 (0.00) 114 (0.32) 147 (0.05) 154 (0.01) 112 (0.24) 

0.99 50 35 (0.03) 23 (0.00) 51 (0.89) 86 (0.00) 67 (0.02) 49 (0.94) 

0.995 25 21 (0.48) 14 (0.03) 23 (0.76) 57 (0.00) 45 (0.00) 23 (0.76) 

  EGARCH EGARCH-t Cond. GPD EGARCH EGARCH-t Cond. GPD 

0.95 251 239 (0.48) 244 (0.7) 238 (0.44) 540 (0.07) 544 (0.05) 413 (0.00) 

0.975 125 89 (0.48) 92 (0.00) 127 (0.86) 288 (0.02) 302 (0.00) 254 (0.82) 

0.99 50 42 (0.29) 30 (0.00) 51 (0.89) 150 (0.03) 162 (0.00) 122 (0.20) 

0.995 25 25 (1.00) 15 (0.04) 25 (1.00) 82 (0.00) 69 (0.01) 50 (1.00) 

  TGARCH TGARCH-t Cond. GPD TGARCH TGARCH-t Cond. GPD 

0.95 251 209 (0.00) 220 (0.05) 265 (0.35) 269 (0.23) 236 (0.36) 253 (0.87) 

0.975 125 81 (0.00) 87 (0.00) 128 (0.86) 141 (0.16) 98 (0.01) 117 (0.5) 

0.99 50 37 (0.06) 30 (0.00) 47 (0.72) 80 (0.00) 37 (0.06) 53 (0.67) 

0.995 25 19 (0.27) 13 (0.01) 20 (0.37) 61 (0.00) 15 (0.04) 26 (0.84) 
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Table 7. Out-of-sample evaluation (continued) 
 

 
  Panel C: NIKKEI 225 

  Upper tail Lower tail 

Prob. Expected GARCH GARCH-t Cond. GPD GARCH GARCH-t Cond. GPD 

0.95 246 210 (0.02) 208 (0.01) 317 (0.00) 295 (0.00) 316 (0.00) 272 (0.09) 

0.975 123 91 (0.02) 95 (0.01) 158 (0.00) 152 (0.00) 157 (0.00) 142 (0.08) 

0.99 49 47 (0.83) 27 (0.00) 49 (1.00) 89 (0.00) 57 (0.25) 53 (0.57) 

0.995 25 27 (0.61) 16 (0.08) 24 (1.00) 51 (0.00) 30 (0.26) 24 (1.00) 

  EGARCH EGARCH-t Cond. GPD EGARCH EGARCH-t Cond. GPD 

0.95 246 211 (0.02) 225 (0.19) 1102 (0.00) 251 (0.72) 286 (0.01) 152 (0.00) 

0.975 123 90 (0.00) 94 (0.00) 364 (0.00) 135 (0.27) 137 (0.2) 108 (0.18) 

0.99 49 54 (0.57) 33 (0.02) 61 (0.09) 82 (0.00) 49 (1.00) 46 (0.72) 

0.995 25 31 (0.19) 23 (0.84) 26 (0.77) 42 (0.00) 23 (0.84) 24 ( 1.00) 

  TGARCH TGARCH-t Cond. GPD TGARCH TGARCH-t Cond. GPD 

0.95 246 219 (0.08) 229 (0.29) 276 (0.05) 267 (0.16) 294 (0.00) 175 (0.00) 

0.975 123 94 (0.00) 96 (0.013) 129 (0.55) 144 (0.05) 143 (0.07) 109 (0.22) 

0.99 49 60 (0.13) 31 (0.00) 52 (0.67) 88 (0.00) 57 (0.25) 48 (0.94) 

0.995 25 32 (0.13) 20 (0.42) 25 (0.92) 50 (0.00) 24 (1.00) 23 (0.84) 
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Figures 
 

 
 Figure 1. S&P 500 index log returns (12/4/1987 - 10/17/2011) 

 

 
Figure 2. FTSE 100 index log returns (12/11/1987 - 10/17/2011) 

 
Figure 3. NIKKEI 225 index log returns (10/7/1987- 10/17/2011) 
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Log likelihood u=1.83 u=1.84 u=1.85 u=1.86 

Linear relationship 217.69 
 

327.75 215.33 213.02 

Quadratic relationship 221.30 
 

216.21 216.85 213.95 

Deviance Statistic 7.23 5.09 3.03* 1.87* 

 
Figure 4. In-sample mean residual life plot and likelihood ratio tests. 
Calculated at different potential thresholds for the S&P 500 standardized normal 
residuals (upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=1.40 u=1.41 u=1.42 u=1.43 

Linear relationship 279.19 278.36 277.23 275.71 

Quadratic relationship 282.69 280.97 279.10 277.01 

Deviance Statistic 7.01 5.21 3.74* 2.60* 

 
Figure 5. In-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the FTSE 100 index standardized normal 
residuals (upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.24 u=2.25 u=2.26 u=2.27 

Linear relationship 124.25 123.19 120.62 119.22 

Quadratic relationship 127.37 125.13 122.02 119.85 

Deviance Statistic 6.24 3.87 2.79* 1.26* 

 
Figure 6. In-sample mean residual life plot and likelihood ratio tests 

Calculated at different potential thresholds for the NIKKEI 225 index standardized 
normal residuals (upper tail). * denotes statistical significance at 5% level. 
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Log likelihood u=0.53 u=0.54 u=0.55 u=0.56 

Linear relationship 588.71 586.69 584.71 582.63 

Quadratic relationship 591.53 589.03 586.60 584.13 

Deviance Statistic 5.65 4.69 3.79* 3.01* 

 
Figure 7. Out-of-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the S&P 500 index standardized normal 
residuals (upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.08 u=2.09 u=2.10 u=2.11 

Linear relationship 74.93 72.31 69.76 67.04 

Quadratic relationship 77.37 74.39 71.42 68.48 

Deviance Statistic 4.88 4.17 3.32* 2.88* 

 
Figure 8. Out-of-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the FTSE 100 index standardized normal 
residuals (upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.24 u=2.25 u=2.26 u=2.27 

Linear relationship 73.52 71.32 70.32 69.63 

Quadratic relationship 76.52 73.91 71.87 70.29 

Deviance Statistic 6.00 5.16 3.10* 1.32* 

 
Figure 9. Out-of-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the NIKKEI 225 index standardized 
normal residuals (upper tail). * denotes statistical significance at 5% level.  
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Log likelihood u=1.99 u=2.00 u=2.01 u=2.02 

Linear relationship 232.89 233.20 233.75 234.99 

Quadratic relationship 236.80 236.04 235.64 236.02 

Deviance Statistic 7.81 5.69 3.77* 2.05* 

 
Figure 10. In-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the S&P 500 index negated standardized 
normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.43 u=2.44 u=2.45 u=2.46 

Linear relationship 170.60 170.75 172.01 171.67 

Quadratic relationship 174.44 173.18 173.16 172.08 

Deviance Statistic 7.69 4.87 2.29* 0.80* 

 
Figure 11. In-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the FTSE 100 index negated standardized 
normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.74 u=2.75 u=2.76 u=2.77 

Linear relationship 27.74 25.52 23.55 21.02 

Quadratic relationship 30.20 27.46 24.70 22.17 

Deviance Statistic 4.93 3.88 2.30* 2.32* 

 
Figure 12. In-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the NIKKEI 225 index negated 
standardized normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.44 u=2.45 u=2.46 u=2.47 

Linear relationship 168.52 165.21 166.39 167.44 

Quadratic 
relationship 

171.91 170.03 168.16 166.30 

Deviance Statistic 7.12 5.17 3.52* 2.18* 

 
Figure 13. Out-of-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the S&P 500 index negated standardized 
normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=2.72 u=2.73 u=2.74 u=2.75 

Linear relationship 96.14 95.30 93.69 96.14 

Quadratic relationship 99.47 97.21 94.66 99.47 

Deviance Statistic 6.66 3.82 1.93* 6.66* 

 
Figure 14. Out-of-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the FTSE 100 index negated standardized 
normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Log likelihood u=1.83 u=1.84 u=1.85 u=1.86 

Linear relationship 301.49 296.98 298.59 296.98 

Quadratic relationship 304.12 297.88 299.96 297.88 

Deviance Statistic 5.26 1.80 2.75* 1.80* 

 
Figure 15. Out-of-sample mean residual life plot and likelihood ratio tests  
Calculated at different potential thresholds for the NIKKEI 225 index negated 
standardized normal residuals (lower tail). * denotes statistical significance at 5% level.  
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Figure 16. Backtesting from January 4, 2010 to October 17, 2011 for the FTSE 100 
index. Conditional quantiles estimates of the GPD, Normal and t approaches at the 99 
per cent of probability are superimposed to the negative log returns. 


