98 research outputs found

    P300 in Schizophrenia: Interactions between Amplitudes and Topography

    Get PDF
    Low P300 amplitudes and topographical asymmetries have been reponed in schizophrenic patients, but reference-independent amplitude assessment failed to replicate reduced amplitudes. P300 amplitude is conventially assessed at midline electrodes (PZ), anti asymmetric topography as reported in schizophrenics, may conj'ound this measurement. We lnvestigated the possible Interaction between P300 ropography and assessments of amplitudes. ln 41 clinically stable schizophrenics and 31 normal controls, the generalfinding ofreduced amplitudes at the P'l electrode and topographical asymmetrles in the patient group were replicated. ln both groups, a.symmetries of the P300 field (lateralized peaks) reduced the standard amplitude assessment at the midline parletal electrode, but did not Qjfoct the reference-independent, global amplitude assessment. This shows thal asymmetry per se does not imply reduced field strength. in addition, in schizophreraics. but not in controls, there was a significcmt effect oftlae direction of asymmetry on both amplltude measures, amplitudes belng lower with increasing shift ofthe P300 peak to the right side. Considering also the slightly left-lateralized peaks in the normal controls. this suggests rhat only right lateralized P300 peaks upressfunctional deficits in schizophrenics, whereas left lateralized pealcs fall wlthin the physiological variability of the P3OO field. Tht refonnce-independent amplitude assessment is proposed for unambiguous amplitude assessment in order to better define the clinical, psychological and physiopathological mtaning of the P3OO alterations in schizophrenics

    Ergebnisse einer geologischen Neuaufnahme der Grünschiefer von Wippra (Harz)

    Get PDF
    kein Abstract vorhandenno abstract availabl

    Wernicke-Kleist-Leonhard phenotypes of endogenous psychoses: a review of their validity .

    Get PDF
    While the ICD-DSM paradigm has been a major advance in clinical psychiatry, its usefulness for biological psychiatry is debated. By defining consensus-based disorders rather than empirically driven phenotypes, consensus classifications were not an implementation of the biomedical paradigm. In the field of endogenous psychoses, the Wernicke-Kleist-Leonhard (WKL) pathway has optimized the descriptions of 35 major phenotypes using common medical heuristics on lifelong diachronic observations. Regarding their construct validity, WKL phenotypes have good reliability and predictive and face validity. WKL phenotypes come with remarkable evidence for differential validity on age of onset, familiality, pregnancy complications, precipitating factors, and treatment response. Most impressive is the replicated separation of high- and low-familiality phenotypes. Created in the purest tradition of the biomedical paradigm, the WKL phenotypes deserve to be contrasted as credible alternatives with other approaches currently under discussion.

    Is Ankyrin a genetic risk factor for psychiatric phenotypes?

    Get PDF
    Background Genome wide association studies reported two single nucleotide polymorphisms in ANK3 (rs9804190 and rs10994336) as independent genetic risk factors for bipolar disorder. Another SNP in ANK3 (rs10761482) was associated with schizophrenia in a large European sample. Within the debate on common susceptibility genes for schizophrenia and bipolar disorder, we tried to investigate common findings by analyzing association of ANK3 with schizophrenia, bipolar disorder and unipolar depression. Methods We genotyped three single nucleotide polymorphisms (SNPs) in ANK3 (rs9804190, rs10994336, and rs10761482) in a case-control sample of German descent including 920 patients with schizophrenia, 400 with bipolar affective disorder, 220 patients with unipolar depression according to ICD 10 and 480 healthy controls. Sample was further differentiated according to Leonhard's classification featuring disease entities with specific combination of bipolar and psychotic syndromes. Results We found no association of rs9804190 and rs10994336 with bipolar disorder, unipolar depression or schizophrenia. In contrast to previous findings rs10761482 was associated with bipolar disorder (p = 0.015) but not with schizophrenia or unipolar depression. We observed no association with disease entities according to Leonhard's classification. Conclusion Our results support a specific genetic contribution of ANK3 to bipolar disorder though we failed to replicate findings for schizophrenia. We cannot confirm ANK3 as a common risk factor for different diseases

    Transplacental Passage of Interleukins 4 and 13?

    Get PDF
    The mechanisms by which prenatal events affect development of adult disease are incompletely characterized. Based on findings in a murine model of maternal transmission of asthma risk, we sought to test the role of the pro-asthmatic cytokines interleukin IL-4 and -13. To assess transplacental passage of functional cytokines, we assayed phosphorylation of STAT-6, a marker of IL-4 and -13 signaling via heterodimeric receptor complexes which require an IL-4 receptor alpha subunit. IL-4 receptor alpha−/− females were mated to wild-type males, and pregnant females were injected with supraphysiologic doses of IL-4 or 13. One hour after injection, the receptor heterozygotic embryos were harvested and tissue nuclear proteins extracts assayed for phosphorylation of STAT-6 by Western blot. While direct injection of embryos produced a robust positive control, no phosphorylation was seen after maternal injection with either IL-4 or -13, indicating that neither crossed the placenta in detectable amounts. The data demonstrate a useful approach to assay for transplacental passage of functional maternal molecules, and indicate that molecules other than IL-4 and IL-13 may mediate transplacental effects in maternal transmission of asthma risk

    DNA methylation and mRNA expression of SYN III, a candidate gene for schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The synapsin III (<it>SYN III</it>) gene on chromosome 22q is a candidate gene for schizophrenia susceptibility due to its chromosome location, neurological function, expression patterns and functional polymorphisms.</p> <p>Methods</p> <p>This research has established the mRNA expression of <it>SYN III </it>in 22 adult human brain regions as well as the methylation specificity in the closest CpG island of this gene. The methylation specificity studied in 31 brain regions (from a single individual) was also assessed in 51 human blood samples (representing 20 people affected with schizophrenia and 31 normal controls) including a pair of monozygotic twin discordant for schizophrenia and 2 non-human primates.</p> <p>Results</p> <p>The results show that the cytosine methylation in this genomic region is 1) restricted to cytosines in CpG dinucleotides 2) similar in brain regions and blood and 3) appears conserved in primate evolution. Two cytosines (cytosine 8 and 20) localized as the CpG dinucleotide are partially methylated in all brain regions studied. The methylation of these sites in schizophrenia and control blood samples was variable. While cytosine 8 was partially methylated in all samples, the distribution of partial to complete methylation at the cytosine 20 was 22:9 in controls as compared to 18:2 in schizophrenia (p = 0.82). Also, there is no difference in methylation between the affected and unaffected member of a monozygotic twin pair.</p> <p>Conclusion</p> <p>The variation in <it>SYN III </it>methylation studied is 1) not related to schizophrenia in the population sample or a monozygotic twin pair discordant for schizophrenia and 2) not related to the mRNA level of <it>SYN IIIa </it>in different human brain regions.</p

    The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.</p> <p>Methods</p> <p>For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.</p> <p>Results</p> <p>The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.</p> <p>Conclusions</p> <p>The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.</p
    corecore