336 research outputs found

    A Genome-Wide Association Study of Circulating Galectin-3

    Get PDF
    Galectin-3 is a lectin involved in fibrosis, inflammation and proliferation. Increased circulating levels of galectin-3 have been associated with various diseases, including cancer, immunological disorders, and cardiovascular disease. To enhance our knowledge on galectin-3 biology we performed the first genome-wide association study (GWAS) using the Illumina HumanCytoSNP-12 array imputed with the HapMap 2 CEU panel on plasma galectin-3 levels in 3,776 subjects and follow-up genotyping in an additional 3,516 subjects. We identified 2 genome wide significant loci associated with plasma galectin-3 levels. One locus harbours the LGALS3 gene (rs2274273; P = 2.35 × 10(-188)) and the other locus the ABO gene (rs644234; P = 3.65 × 10(-47)). The variance explained by the LGALS3 locus was 25.6% and by the ABO locus 3.8% and jointly they explained 29.2%. Rs2274273 lies in high linkage disequilibrium with two non-synonymous SNPs (rs4644; r(2) = 1.0, and rs4652; r(2) = 0.91) and wet lab follow-up genotyping revealed that both are strongly associated with galectin-3 levels (rs4644; P = 4.97 × 10(-465) and rs4652 P = 1.50 × 10(-421)) and were also associated with LGALS3 gene-expression. The origins of our associations should be further validated by means of functional experiments

    Increased genetic contribution to wellbeing during the COVID-19 pandemic

    Get PDF
    Physical and mental health are determined by an interplay between nature, for example genetics, and nurture, which encompasses experiences and exposures that can be short or long-lasting. The COVID-19 pandemic represents a unique situation in which whole communities were suddenly and simultaneously exposed to both the virus and the societal changes required to combat the virus. We studied 27,537 population-based biobank participants for whom we have genetic data and extensive longitudinal data collected via 19 questionnaires over 10 months, starting in March 2020. This allowed us to explore the interaction between genetics and the impact of the COVID-19 pandemic on individuals' wellbeing over time. We observe that genetics affected many aspects of wellbeing, but also that its impact on several phenotypes changed over time. Over the course of the pandemic, we observed that the genetic predisposition to life satisfaction had an increasing influence on perceived quality of life. We also estimated heritability and the proportion of variance explained by shared environment using variance components methods based on pedigree information and household composition. The results suggest that people's genetic constitution manifested more prominently over time, potentially due to social isolation driven by strict COVID-19 containment measures. Overall, our findings demonstrate that the relative contribution of genetic variation to complex phenotypes is dynamic rather than static

    GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk

    Get PDF
    Male pattern baldness (MPB) or androgenetic alopecia is one of the most common conditions affecting men, reaching a prevalence of similar to 50% by the age of 50; however, the known genes explain little of the heritability. Here, we present the results of a genome-wide association study including more than 70,000 men, identifying 71 independently replicated loci, of which 30 are novel. These loci explain 38% of the risk, suggesting that MPB is less genetically complex than other complex traits. We show that many of these loci contain genes that are relevant to the pathology and highlight pathways and functions underlying baldness. Finally, despite only showing genome-wide genetic correlation with height, pathway-specific genetic correlations are significant for traits including lifespan and cancer. Our study not only greatly increases the number of MPB loci, illuminating the genetic architecture, but also provides a new approach to disentangling the shared biological pathways underlying complex diseases

    Mediation Analysis Demonstrates That Trans-eQTLs Are Often Explained by Cis-Mediation:A Genome-Wide Analysis among 1,800 South Asians

    Get PDF
    A large fraction of human genes are regulated by genetic variation near the transcribed sequence (cis-eQTL, expression quantitative trait locus), and many cis-eQTLs have implications for human disease. Less is known regarding the effects of genetic variation on expression of distant genes (trans-eQTLs) and their biological mechanisms. In this work, we use genome-wide data on SNPs and array-based expression measures from mononuclear cells obtained from a population-based cohort of 1,799 Bangladeshi individuals to characterize cis- and trans-eQTLs and determine if observed trans-eQTL associations are mediated by expression of transcripts in cis with the SNPs showing trans-association, using Sobel tests of mediation. We observed 434 independent trans-eQTL associations at a false-discovery rate of 0.05, and 189 of these transeQTLs were also cis-eQTLs (enrichment P</p

    Author Correction:GWAS for male-pattern baldness identifies 71 susceptibility loci explaining 38% of the risk

    Get PDF
    Male pattern baldness (MPB) or androgenetic alopecia is one of the most common conditions affecting men, reaching a prevalence of similar to 50% by the age of 50; however, the known genes explain little of the heritability. Here, we present the results of a genome-wide association study including more than 70,000 men, identifying 71 independently replicated loci, of which 30 are novel. These loci explain 38% of the risk, suggesting that MPB is less genetically complex than other complex traits. We show that many of these loci contain genes that are relevant to the pathology and highlight pathways and functions underlying baldness. Finally, despite only showing genome-wide genetic correlation with height, pathway-specific genetic correlations are significant for traits including lifespan and cancer. Our study not only greatly increases the number of MPB loci, illuminating the genetic architecture, but also provides a new approach to disentangling the shared biological pathways underlying complex diseases

    Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

    Get PDF
    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases

    Improved imputation quality of low-frequency and rare variants in European samples using the 'Genome of the Netherlands'

    Get PDF
    Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits, low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with 'true' genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant improvement in the imputation quality for rare variants (MAF 0.05-0.5%) compared with 1000G. In Dutch samples, the mean observed Pearson correlation, r 2, increased from 0.61 to 0.71. W
    • …
    corecore