44 research outputs found

    Soil quality evaluation under agro-silvo-pastoral Mediterranean management systems

    Get PDF
    According to Franzluebber (2002) the degree of stratification of soil organic C and N, as well as other parameters, with soil depth, expressed as a ratio, can indicate soil quality or soil ecosystem functioning and sustainability under different agricultural management. Stratification ratios > 2 indicate a higher soil quality and contribution to agriculture sustainability. A case study from northeastern Sardinia (Italy) is presented

    Post-Newtonian Parameters from Alternative Theories of Gravity

    Full text link
    Alternative theories of gravity have been recently studied in connection with their cosmological applications, both in the Palatini and in the metric formalism. The aim of this paper is to propose a theoretical framework (in the Palatini formalism) to test these theories at the solar system level and possibly at the galactic scales. We exactly solve field equations in vacuum and find the corresponding corrections to the standard general relativistic gravitational field. On the other hand, approximate solutions are found in matter cases starting from a Lagrangian which depends on a phenomenological parameter. Both in the vacuum case and in the matter case the deviations from General Relativity are controlled by parameters that provide the Post-Newtonian corrections which prove to be in good agreement with solar system experiments.Comment: 17 pages, no figure

    Land use change effects on soil organic carbon store. An opportunity to soils regeneration in Mediterranean areas: Implications in the 4p1000 notion

    Get PDF
    Abstract The knowledge about land management effects on soil capacity to store carbon is necessary to planning effective strategies by managers and decision-makers. In this study we analyzed the land use change (LUC) effects on soil organic carbon stocks (SOC-S) for long term in the Sardinia region - Italy (Mediterranean area). Throughout the 20th century, the studied area has undergone different LUC. The first LUC was in 1938, from forest to agricultural land under three different uses: vineyards, hay crop and pasture, later (1966) some of this agricultural land were abandoned to seminatural ecosystem (second LUC). The different LUC affected to SOC-S causing decarbonization, carbonization and recarbonization processes along the soil profile. The different land uses studied chronologically were: i) natural forest - cork oak forest (Cof), ii) tilled vineyard (Tv), iii) no tilled grassed vineyard (Ntgv), iv) hay crop (Hc), v) pasture - silvopastoral and silvoarable practices (P), and vi) former vineyard - vineyards abandoned and naturally revegetated (Fv). The first LUC (Cof to Tv, Ntgv, Hc and P) caused 5.1% and 37.5% reduction on SOC-S for Tv and Ntgv (soil decarbonization), however, the SOC-S increased 47.1% and 51.3% for Hc and P respectively (soil carbonization). The second LUC (Tv and Ntgv to Fv) increased the SOC-S on average 66.3% (soil recarbonization). In general, these effects were observed principally in depth. This study shows the importance of land use and LUC with respect to SOC-S, and that the human action can degrade and/or regenerate the soil, affecting to soil functions. Consequently, is necessity to promote good environmental practices to improve the soil functions and to reduce the greenhouse gases (ecosystem services). On the presumption that the SOC sequestration through of agricultural management can reduced the atmospheric CO2 concentration (4p1000 target in the XXI Conference of the Parties – Paris, 2015). Therefore, the soils regeneration via carbonization and/or recarbonization is an opportunity to prevent the climate change

    Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br10 thin films

    Get PDF
    Two-dimensional (2D) Ruddlesden–Popper perovskites have emerged as a new class of hybrid materials with high photoluminescence and improved stability compared to their three-dimensional (3D) counterparts. Studies of the photophysics of these new 2D perovskites are essential for the fast development of optoelectronic devices. Here, we study the power and temperature dependences of the photoluminescence properties of the (PA)2(MA)2Pb3Br10 hybrid perovskite. High electron–phonon coupling near room temperature was found to be dominated by longitudinal optical (LO) phonons via the Fröhlich interaction. However, we show that the presence of free carriers is also possible, with lower trapping states and higher and more stable emission compared to the 3D MAPbBr3. These characteristics make the studied 2D material very attractive for optoelectronic applications, including solar cells and light emitting diodes (LEDs). Our investigation provides new fundamental insights into the emission characteristics of 2D lead halide perovskites

    Nanoporous silicon tubes: the role of geometry in nanostructure formation and application to light emitting diodes

    Get PDF
    Obtaining light emission from silicon has been the holy grail of optoelectronics over the last few decades. One of the most common methods for obtaining light emission from silicon is to reduce it to a nanoscale structure, for example by producing porous silicon. Here, we present a method for the large-area fabrication of porous silicon microtubes by the stain etching of silicon micropillar arrays. We explain and model how the formation of the microtubes is influenced by the morphology of the substrate, especially the concave or convex character of the 3D features. Light emission is demonstrated at the micro- and nanoscale respectively by photo- and cathodoluminescence. Finally, we demonstrate a 0.55 cm(2) device that can work as a photodetector with 2.3% conversion efficiency under one sun illumination, and also as a broadband light emitting diode, illustrating the applicability of our results for optoelectronic applications

    Surface passivation and self-regulated shell growth in selective area-grown GaN-(Ale,Ga)N core-shell nanowires

    Get PDF
    The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al, Ga) N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al, Ga) N core-shell nanowires grown on Si and diamond substrates. While the (Al, Ga) N shell allows a suppression of yellow defect luminescence from the GaN core, an overall intensity loss due to Si-related defects at the GaN/(Al, Ga) N interface has been observed in the case of Si substrates. Scanning transmission electron microscopy measurements indicate a superior crystal quality of the (Al, Ga) N shell along the nanowire side facets compared to the (Al, Ga) N cap at the top facet. A nucleation study of the (Al, Ga) N shell reveals a pronounced bowing of the nanowires along the c-direction after a short deposition time which disappears for longer growth times. This is assigned to an initially inhomogeneous shell nucleation. A detailed study of the proceeding shell growth allows the formulation of a strain-driven self-regulating (Al, Ga) N shell nucleation model

    Strain-Induced Band Gap Engineering in Selectively Grown GaN-(Al,Ga)N Core-Shell Nanowire Heterostructures

    Get PDF
    We demonstrate the selective area growth of GaN-(Al,Ga)N core shell nanowire heterostructures directly on Si(111). Photoluminescence spectroscopy on as-grown nanowires reveals a strong blueshift of the GaN band gap from 3.40 to 3.64 eV at room temperature. Raman measurements relate this shift to compressive strain within the GaN core. On the nanoscale, cathodoluminescence spectroscopy and scanning transmission electron microscopy prove the homogeneity of strain-related luminescence along the nanowire axis and the absence of significant fluctuations within the shell, respectively. A comparison of the experimental findings with numerical simulations indicates the absence of a significant defect-related strain relaxation for all investigated structures, with a maximum compressive strain of -3.4% for a shell thickness of 50 nm. The accurate control of the nanowire dimensions, namely, core diameter, shell thickness, and nanowire period, via selective area growth allows a specific manipulation of the resulting strain within individual nanowires on the same sample. This, in turn, enables a spatially resolved adjustment of the GaN band gap with an energy range of 240 meV in a one-step growth process

    Direct visualization of the charge transfer in Graphene/α\alpha-RuCl3_3 heterostructure

    Get PDF
    We investigate the electronic properties of a graphene and α\alpha-ruthenium trichloride (hereafter RuCl3_3) heterostructure, using a combination of experimental and theoretical techniques. RuCl3_3 is a Mott insulator and a Kitaev material, and its combination with graphene has gained increasing attention due to its potential applicability in novel electronic and optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy, low energy electron microscopy, and density functional theory (DFT) calculations we are able to provide a first direct visualization of the massive charge transfer from graphene to RuCl3_3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. The electronic band structure is compared to DFT calculations that confirm the occurrence of a Mott transition for RuCl3_3. Finally, a measurement of spatially resolved work function allows for a direct estimate of the interface dipole between graphene and RuCl3_3. The strong coupling between graphene and RuCl3_3 could lead to new ways of manipulating electronic properties of two-dimensional lateral heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power opto-electronics devices

    Optimizing the yield of A-polar GaAs nanowires to achieve defect-free zinc blende structure and enhanced optical functionality

    Get PDF
    Compound semiconductors exhibit an intrinsic polarity, as a consequence of the ionicity of their bonds. Nanowires grow mostly along the (111) direction for energetic reasons. Arsenide and phosphide nanowires grow along (111)B, implying a group V termination of the (111) bilayers. Polarity engineering provides an additional pathway to modulate the structural and optical properties of semiconductor nanowires. In this work, we demonstrate for the first time the growth of Ga-assisted GaAs nanowires with (111)A-polarity, with a yield of up to ∌50%. This goal is achieved by employing highly Ga-rich conditions which enable proper engineering of the energies of A and B-polar surfaces. We also show that A-polarity growth suppresses the stacking disorder along the growth axis. This results in improved optical properties, including the formation of AlGaAs quantum dots with two orders or magnitude higher brightness. Overall, this work provides new grounds for the engineering of nanowire growth directions, crystal quality and optical functionality

    Peripheral facial palsy following ventriculoperitoneal shunt. The lesson we have learned

    Get PDF
    The most frequent complications after shunt surgery are infective and obstructive. Other types are less common, and eventually occur due to technical errors during brain ventricular puncture, opening the intraperitoneal cavity or the tunnelling of the catheter between the two points. Although rare, there are well-reported complications related to the poor positioning of the distal catheter, with perforation of organs and tissues.We report a very rare case of a male patient with normal pressure hydrocephalus submitted to ventriculoperitoneal shunt. During tunnelling of the shunt stylet, a peripheral facial palsy due to injury to the extra cranial segment of the facial nerve occurred.To the best of our knowledge this is the second case described in Literature.The patient and the surgeon should be aware of this very rare but possible complication in shunt surgery being careful to the course of the facial nerve in the mastoid region. Keywords: Normal pressure hydrocephalus, Ventriculoperitoneal shunt complications, Facial nerve paralysi
    corecore