78 research outputs found

    Colon contradictions: NF-κB signaling in intestinal tumorigenesis

    Get PDF
    No abstract available

    YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration

    Get PDF
    Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element

    YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration.

    Get PDF
    Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.This work was supported by Worldwide Cancer Research (13-1216 to KBJ), Lundbeck Foundation (R105-A9755 to KBJ), the Danish Cancer Society (R56-A2907 and R124-A7724 to KBJ), the Carlsberg Foundation (to KBJ), EMBO Young Investigator programme (to KBJ), AIRC Special Program Molecular Clinical Oncology ‘‘5 per mille’’ (to SP), an AIRC PI-Grant (to SP), Epigenetics Flagship projects (CNR-Miur grants. to SP), the DFF mobilix programme (to SY), Marie Curie fellowship programme (SY and JG), Foundation of Aase and Ejnar Danielsen (OHN), Axel Muusfeldts Foundation (OHN), The Ragnar Söderberg Foundation (CDM). This project has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreements STEMHEALTH ERCCoG682665 and INTENS 668294 to KBJ and DENOVOSTEM No. 670126 to SP)

    Overfishing and Habitat Loss Drives Range Contraction of Iconic Marine Fishes to Near Extinction

    Get PDF
    Extinctions on land are often inferred from sparse sightings over time, but this technique is ill-suited for wide-ranging species. We develop a space-for-time approach to track the spatial contraction and drivers of decline of sawfishes. These iconic and endangered shark-like rays were once found in warm, coastal waters of 90 nations and are now presumed extinct in more than half (n = 46). Using dynamic geography theory, we predict that sawfishes are gone from at least nine additional nations. Overfishing and habitat loss have reduced spatial occupancy, leading to local extinctions in 55 of the 90 nations, which equates to 58.7% of their historical distribution. Retention bans and habitat protections are urgently necessary to secure a future for sawfishes and similar species

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Environmental effects and individual body condition drive seasonal fecundity of rabbits: identifying acute and lagged processes

    Get PDF
    The reproduction of many species is determined by seasonally-driven resource supply. But it is difficult to quantify whether the fecundity is sensitive to short- or long-term exposure to environmental conditions such as rainfall that drive resource supply. Using 25 years of data on individual fecundity of European female rabbits, Oryctolagus cuniculus, from semiarid Australia, we investigate the role of individual body condition, rainfall and temperature as drivers of seasonal and long-term and population-level changes in fecundity (breeding probability, ovulation rate, embryo survival). We built distributed lag models in a hierarchical Bayesian framework to account for both immediate and time-lagged effects of climate and other environmental drivers, and possible shifts in reproduction over consecutive seasons. We show that rainfall during summer, when rabbits typically breed only rarely, increased breeding probability immediately and with time lags of up to 10 weeks. However, an earlier onset of the yearly breeding period did not result in more overall reproductive output. Better body condition was associated with an earlier onset of breeding and higher embryo survival. Breeding probability in the main breeding season declined with increased breeding activity in the preceding season and only individuals in good body condition were able to breed late in the season. Higher temperatures reduce breeding success across seasons. We conclude that a better understanding of seasonal dynamics and plasticity (and their interplay) in reproduction will provide crucial insights into how lagomorphs are likely to respond and potentially adapt to the influence of future climate and other environmental change.Konstans Wells, Robert B. O’Hara, Brian D. Cooke, Greg J. Mutze, Thomas A.A. Prowse, Damien A. Fordha

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care
    corecore