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Abstract 48 

The reproduction of many species is determined by seasonally-driven resource supply. But it 49 

is difficult to quantify whether the fecundity is sensitive to short or long-term exposure to 50 

environmental conditions such as rainfall that drive resource supply. Using 25 years of data 51 

on individual fecundity of European female rabbits, Oryctolagus cuniculus, from semiarid 52 

Australia, we investigate the role of individual body condition, rainfall and temperature as 53 

drivers of seasonal and long-term and population-level changes in fecundity (breeding 54 

probability, ovulation rate, embryo survival). We built distributed lag models in a hierarchical 55 

Bayesian framework to account for both immediate and time-lagged effects of climate and 56 

other environmental drivers, and possible shifts in reproduction over consecutive seasons. We 57 

show that rainfall during summer, when rabbits typically breed only rarely, increased 58 

breeding probability immediately and with time lags of up to 10 weeks. However, an earlier 59 

onset of the yearly breeding period did not result in more overall reproductive output. Better 60 

body condition was associated with an earlier onset of breeding and higher embryo survival. 61 

Breeding probability in the main breeding season declined with increased breeding activity in 62 

the preceding season and only individuals in good body condition were able to breed late in 63 

the season. Higher temperatures reduce breeding success across seasons. We conclude that a 64 

better understanding of seasonal dynamics and plasticity (and their interplay) in reproduction 65 

will provide crucial insights into how lagomorphs are likely to respond and potentially adapt 66 

to the influence of future climate and other environmental change.  67 

 68 

Keywords Invasive species, lagged effects, dynamic optimization, reproduction, 69 

seasonality 70 

 71 

Introduction 72 
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The reproduction of many species is limited to seasonal time windows of suitable thermal 73 

conditions and sufficient food supply (Bronson 1985; Hone and Clutton-Brock 2007). As 74 

such, the magnitude and seasonal timing of changing environmental conditions can affect 75 

reproduction and population dynamics more generally.  76 

Fecundity (the average per-capita number of offspring per breeding season) consists 77 

of a sequence of components from ovulation to recruitment of offspring into populations, 78 

each of which can be limited by food restriction and environmental stress such as 79 

unfavourable temperatures. For example, an increase in food availability can result in more 80 

females breeding (Desy and Thompson 1983) and larger litter sizes (Stockley 2003). A 81 

prolonged breeding season can allow for repeated reproduction for iteroparous mammals, 82 

leading to substantial increases in annual population growth (Swihart 1984). Food restriction 83 

and environmental stress over prolonged periods can also limit ovulation rates in mammals 84 

(Bronson 2009) and the timing of sexual receptivity, whereas immediate environmentally- or 85 

socially-driven stress during pregnancy imposes a risk on successfully carrying embryos to 86 

term (Ashworth et al. 2009).  87 

In seasonal environments, fecundity can be affected by phenology, whereby there is a 88 

need to match resource availability (within and among seasons and years) with the timing of 89 

reproduction (Via et al. 1995). Often, reproduction among vertebrates from temperate 90 

latitudes is timed to coincide with circannual rhythms of hormonal changes, food intake, and 91 

energy expenditure (Ebling and Barrett, 2008). Species well adapted to highly fluctuating 92 

environments, can maximise their reproductive success by having extended reproductive 93 

periods to compensate for immediate resource shortage or environmental stress (Jonzén et al. 94 

2010; Lof et al. 2012). Therefore, plasticity in species’ reproductive biology and behaviour in 95 

response to changes in environmental factors (exposure-response relationship) is necessary 96 
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for many species to respond to short-term environmental fluctuations (Meyers and Bull 97 

2002), and potentially long-term shifts in environmental resources. 98 

Quantifying the relevant timespan of the exposure to environmental stress, in addition 99 

to the overall strength of environmental drivers, can provide important insights into the 100 

resilience of reproduction to climate and other environmental change (Sæther et al. 2000; 101 

Thompson and Ollason 2001). Measuring reproductive responses to environmental 102 

fluctuations requires teasing apart seasonal and long-term trends, which, in some cases, can 103 

be driven by similar climate (and other environmental) drivers. For example, if a late onset of 104 

seasonal food availability results in less overall annual breeding because of a short breeding 105 

season, variation in seasonal and inter-annual breeding patterns are tightly linked to each 106 

other. In contrast, if the seasonal onset of breeding does not affect the overall (population-107 

level) annual reproductive output, environmental drivers of seasonal and long-term 108 

reproductive trends are not necessarily the same (Fig. 1). Because seasonal variation in 109 

reproductive output can affect inter-annual population abundance it is important to 110 

understand how environmental drivers can affect reproductive performance across season, 111 

particularly for species of management concern, such as pest or threatened species. Progress 112 

towards understanding how individual traits (e.g., body condition) and climate (e.g., variation 113 

in temperature and rainfall) and other environmental conditions (e.g., pasture growth) affect 114 

reproduction and early survival is mostly limited to large mammals based on longitudinal 115 

recapture studies of individuals marked at birth (e.g. Plard et al. 2015). These effects are not 116 

as well understood in small mammals, where data on critical stages of their life cycles is 117 

often missing (Aars and Ims 2002; Lambin and Yoccoz 2001); and population dynamics of 118 

mammals with high fecundity rates and cyclic dynamics (e.g. voles, lemmings) are often 119 

believed to be driven by variation in predation rates (e.g. Hanski et al. 2001). 120 
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Here we examine the long-term effects of climate and other environmental drivers 121 

(e.g., soil moisture and pasture biomass) and individual body condition on the fecundity of 122 

European rabbits, Oryctolagus cuniculus, a polytocous and iteroparous mammal. Rabbits 123 

have considerable reproductive plasticity, being able to repeatedly reproduce within a single 124 

breeding season with varying litter sizes (Brambell 1942). Rabbit reproduction in Australia is 125 

tightly linked to seasonally limited food availability, and more specifically the weather 126 

conditions that promote plant growth (Myers 1970). Females can become pregnant within 10 127 

days of rains that produce germination and sprouting of grasses and herbs (Myers 1970). 128 

Plasticity in the timing of reproduction (i.e. the probability a female reproduces at a certain 129 

time) and ovulation rate (i.e. the investment in a certain number of embryos) is likely to cause 130 

an observed geographic gradient in the timing of peak pregnancy and ovulation rates across 131 

Australia (Gilbert et al. 1987). Furthermore, rabbits can resorb embryos during pregnancy 132 

and this is likely to occur during stressful conditions (Brambell 1942; Conaway et al. 1960). 133 

The sensitivity of long-term changes in the timing and success of reproduction (i.e., 134 

probability of being pregnant, ovulation rate and embryo survival) to temporal variation in 135 

environmental conditions has, until now, not been explored for any lagomorph species.  136 

We employ a novel multifaceted approach, which accounts for the effect of 137 

immediate and lagged environmental conditions, to disentangle the drivers of individual- and 138 

group-level changes in rabbit fecundity rates. Often there is no a priori knowledge about the 139 

time period of exposure that is likely to influence changes in any of the various components 140 

of fecundity (i.e., probability of being pregnant, ovulation rate and embryo survival). 141 

Distributed lag models (DLM) can help overcome this problem, by avoiding aggregating and 142 

averaging covariates over arbitrary periods (Almon 1965; Gasparrini et al. 2010; Schwartz 143 

2000). Here we incorporate distributed lag models into a Bayesian multilevel model 144 

framework to investigate the relative importance of individual and environmental condition 145 
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on seasonal and long-term changes in rabbit fecundity. We use this novel statistical approach 146 

to identify the mechanisms and time scales by which environmental conditions affect rabbit 147 

fecundity. Distributed time lag models have previously been applied in medical sciences 148 

(Schwartz 2000), but their benefit has to date not been tested in ecology. 149 

  150 

Materials and methods 151 

Study area 152 

Our study site was located at Belton (-32.224S 138.708E) in the Flinders Range, South 153 

Australia. The study site is at the southern limit of a semi-arid climate zone and is 154 

characterised by cool winters and warm and dry summers. Pastures at Belton consist of a 155 

mixture of native and introduced grasses and forbs (Stipa spp., Hordeum spp., Bromus spp., 156 

Echium plantagineum, Medicago spp.), including arid-zone species (Atriplex spp., 157 

Sclerolaena spp.) on shallow, loamy soils (Cooke 2014). Pasture growth is seasonal, with a 158 

decreasing herbaceous biomass during summers. Temperatures above 35 C often occur for 159 

more than five consecutive days in summer causing considerable stress on herbaceous plants 160 

(Cooke 2014). The largely nocturnal behaviour of rabbits helps them avoid temperature 161 

extremes, because the ambient temperature in rabbit burrows is fairly constant diurnally, 162 

exhibiting only minor variation over seasons (Cooke 1990). 163 

 164 

Demographic and environmental data 165 

Necropsy data 166 

Our data set consisted of 2,563 females shot between 1968 and 1993 during 199 field 167 

surveys. Approximately 30 rabbits were shot by authorized shooters at approximately six 168 

week intervals and reproductive status recorded after dissection. All applicable institutional 169 

and/or national guidelines for the care and use of animals were followed. Rabbits were shot in 170 
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the order they were encountered. There is a size bias in the sampling technique with young 171 

individuals (< 1000 g for rabbits) being underrepresented in samples of visual encounter. 172 

There was no indication that gestating females were more likely to be shot than non-gestating 173 

females. 174 

Body mass was recorded to the nearest  25 g for entire and eviscerated bodies 175 

(removing all intestinal and urogenital organs), using a Salter dial spring balance. We used 176 

the latter measure in our study to exclude any bias in body mass due to reproduction. 177 

Animals were sexed and ovaries of females were examined for follicles and corpora lutea 178 

and their number recorded. For each uterine horn we recorded the number of embryos. 179 

Embryos of < 7 days gestation cannot be counted as they have not been implanted, but 180 

pregnancy can be recognised because of vascular uterine tissues and recent follicles on the 181 

ovaries. Stage of gestation for embryos > 7 days old was classified according to the shape and 182 

size of embryos (Minot and Taylor 1905), allowing for shorter gestation in wild rabbits, i.e. 183 

28 days at our study site (Cooke 1974). 184 

We used the dry weight of fixed eye lenses as a surrogate for individual age. This is 185 

possible because eye lenses grow continuously through life independent of nutritional 186 

conditions (Dudzinski and Mykytowycz 1961). We did not directly transform eye lens weight 187 

into an age estimate because this is inaccurate for fully-grown rabbits − an artefact of the 188 

underlying logistic growth relationship (Dudzinski and Mykytowycz 1961). Fat coverage of 189 

the kidneys was scored between 0-5 based on a visual assessment of the peri-renal fat visible 190 

(0: no fat, 5: kidney completely covered in fat). Kidney fat scores provide good indication of 191 

short-term nutritional condition (Henke and Demarais 1990); for simplicity, we treated this 192 

ordinal variable as a continuous covariate in our analysis. 193 

We predicted the (average) weight for rabbits of all ages by fitting a growth function 194 

(West et al. 2001) to all measures of body mass in relation to eye lens weight (a proxy of 195 
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age). We then calculated a body mass index for all individual using the difference between 196 

observed and predicted body mass (the residuals). Large positive values indicated observed 197 

body masses above average weight-for-age and vice versa i.e., negative values indicate less 198 

weight than average (see electronic supplementary material ESM 1). 199 

  200 

Abundance surveys 201 

Rabbit relative abundance counts were conducted at Belton between 1965 and 1994 prior to 202 

necropsy surveys. Rabbits were counted from a vehicle driven at constant speed (8 km/h) 203 

along an 8-km-transect using quartzhalogen spotlight (100 W, ca. 80 m beam range) (Cooke 204 

1983). Counting was repeated between 2-6 times on consecutive nights. During the 30-year 205 

study period, the rabbit population at Belton experienced human management, directly 206 

affecting the population abundance. In particular, the European Rabbit Flea, Spilopsyllus 207 

cuniculi, was released at a nearby field site in 1969, causing the spread of myxomatosis and a 208 

considerable decline in the rabbit population (Cooke 1983) (electronic supplementary 209 

material ESM 1, Fig. E.1.3). 210 

 211 

Climate and environmental data 212 

We generated average daily measures of maximum temperature and rainfall per week for 213 

Belton using the daily records from the SILO, Australian climate database (Jeffrey et al. 214 

2001). We calculated a soil moisture index by adding the rainfall for each day and subtracting 215 

0.2 times the evaporation from a free-water surface from the previous day. We imposed a 216 

maximum value of 100 to account for soil saturation. A similar approach was found to do a 217 

good job at approximating major changes in soil moisture conditions at a closely located site 218 

(Cooke unpublished data). From this time series, we also generated weekly average measures 219 

of weather for our analysis. We estimated monthly growth of total standing dry matter of 220 
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herbaceous plants (difference in pasture biomass kg/ha), using output from the AussieGrass 221 

model (Carter et al. 2000). We used this as a proxy for food availability (Roxburgh et al. 222 

2004).  223 

 224 

Statistical analysis 225 

We used generalized linear models, fitted in a Bayesian framework, to examine the potential 226 

drivers of variation in breeding probability (the probability of being pregnant), ovulation rate 227 

and embryo survival. We assumed that the recorded instance z(i,t) that female i is pregnant at 228 

survey time t follows a Bernoulli distribution given the breeding probability (i,t), which we 229 

linked to covariates with a logit link function. Given that reproduction of rabbits is highly 230 

seasonal, we allowed all dependent parameters to vary across season s classified as 1) 231 

January – April (rare breeding in summer due to dry weather and shortage in food supply), 2) 232 

May-June (early breeding after the onset of pasture growth), 3) July – October (main 233 

breeding period), and 4) November – December (late breeding). The model for breeding 234 

probability can be described as: 235 

Breeding probability ~ day of year + Eye lens weight + individual body condition + 236 

environmental data over time lags + density dependence + breeding probability at preceding 237 

time step (group-level).  238 

This can be expressed mathematically as:  239 

  z(i,t) ~ Bernoulli[(i,t)]  (eqn 1) 240 

and 241 

  logit[(i,t)] ~ β


0(y) + XJlday(i)B


Jlday(s) + XAge(i)B


Age(s)+ XInd(i)B


Ind(s) + 242 

XEnv(t,..LEnv)


Env(s) + N

(s)N(t,..LN)) + β


Prev(s) μ(t-1))  (eqn 2) 243 

 244 
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where XJlday and XAge are matrices of Julian day of capture and individual age of 4
th

 245 

orthogonal polynomial order, respectively; XInd is a matrix of individual body condition 246 

covariates; B

(s) are season-specific coefficient estimates for these covariates. Note that the 247 

superscript ‘
’

 is used as we implemented the same model equations for modelling variation 248 

in ovulation rate and embryo survival. XEnv and N comprise arrays of environmental 249 

covariates and population size respectively, with values from consecutive time steps 250 

measured between time t and the maximum time lag LEnv and LN, respectively.  251 

We used distributed lag models (DLM) (Welty et al. 2009) to avoid aggregating 252 

covariates over an arbitrary number of time steps. The DLM regresses the response variable 253 

against the lagged covariates (i.e. for time t against covariates at times t-1, t-2 etc.). Our 254 

model assumes that the effects of the covariates up to lag time  are of similar magnitude 255 

(i.e. assuming a multivariate prior distribution), after which they shrink towards zero. We 256 

estimated the parameter  for each DLM. We considered the average of the vector  notated 257 

as ̂ as overall effect size from DLMs (see electronic supplementary material ESM 2).  258 

To address the effect that breeding activity is likely biased by earlier attempts, we 259 

included a 1
st
 order auto-regression term μ of the average breeding probability in the 260 

preceding seasonal time step in the model. It is unlikely that the removal of individuals would 261 

bias average breeding probability because the number of females removed was very low and 262 

population size large. To do this, we modelled μ as the average breeding probability in each 263 

year y and season s, assuming that coefficient estimates for β


Prev indicate shifting breeding 264 

probability over consecutive time steps/ seasons. 265 

We modelled ovulation rates (individual counts of corpora lutea), w(i,t), using a 266 

mixed log-normal-Poisson likelihood. We then modelled the log-scale mean of counts μw(i,t) 267 

using the same covariates as given in equation 1. 268 
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We modelled embryo survival rates (i.e. the proportion/number of ova that resulted in 269 

embryos to 28 days y(i,t) carried) as a fraction of w(i,t) using a binomial distribution. This is 270 

because for each ova in w(i,t), there is a success rate (i,t) that it will result in a fully 271 

developed embryo after 28 days. Thus, we assumed 272 

  y(i,t) ~ Bin[w(i,t), (i,t)
(i)

]  (eqn 3). 273 

We used the exponential scaling factor (i) to correct for observation bias in (i,t), 274 

which we calculated as the time during the gestation period when embryos were counted 275 

(embryo age at dissection time) divided by the total length of the gestation period (28 days). 276 

In a preliminary analysis we found evidence that embryos are progressively resorbed during 277 

gestation (Appendix S.1.3). The logit link function was then used to model variation in (i,t) 278 

in response to covariates as given in equation 1. 279 

We used an open population model with a mixed binomial-Poisson likelihood (Aubry 280 

et al. 2012; Royle 2004; Zellweger-Fischer et al. 2011) to estimate rabbit relative abundance 281 

for each time step, v, during the population survey and then assigned values to N(t) (relative 282 

abundance) based on time differences of no more than 10 days between t and v (i.e. necropsy 283 

and spotlight count data). To do this, we modelled counts c(v,k) for the repeated surveys 284 

during time step v as: 285 

c(v,k)~ Bin[N(v), p(k)] and N(v) ~ Pois[(y,m)]  286 

where detection probability p(k) was allowed to vary over months and in response to 287 

maximum temperature and rainfall during the day of survey. Abundance indices N(v) were 288 

assumed to be random draws from the density (y,m), varying over years y and months m. 289 

See electronic supplementary material ESM 2 for details of the model code and ESM 1 Fig. 290 

S.1.1 for estimated abundance indices. 291 

We used the freeware JAGS 3.4.0 for sampling and model fitting, operated via the R 292 

statistical platform with the package rjags (Plummer 2003). We used Markov Chain Monte 293 
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Carlo (MCMC) sampling in a Bayesian framework to select the polynomial order for the age-294 

related regression terms with equal priors for each order. We used a Gibbs variable selection 295 

(GVS) procedure for joint sampling of the most likely polynomial order and coefficient 296 

values (Dellaportas et al. 2002; O'Hara and Sillanpää 2009). The posterior selection 297 

frequency (v) indicated the relative importance of selected variables v, while the use of 298 

pseudo-priors ensured accurate coefficient estimates (Wells et al. 2014). Likewise, we used 299 

GVS to select all other variables (except those with time lags) in the model; we do this 300 

because seasonally variable coefficient estimates led to a large parameter space. All 301 

covariates were scaled (centred values divided by one SD). 302 

We applied posterior predictive model diagnostics to assess whether the model 303 

assumptions are good approximations of the data generating process. Bayesian p-values 304 

around 0.5 indicate good fit whereas values close to 0 or 1 indicate an increasing discrepancy 305 

between model predictions and observation data (Gelman et al. 1996). We also calculated 306 

Bayesian p-values for models where we replaced all DLMs with models for single covariates 307 

calculated as either immediate measures (environmental conditions measured during the same 308 

week as the response variable) or those measured at an arbitrary 10 week period prior to 309 

when the response variables was measured. This allowed us to directly test whether DLMs 310 

provided a better fit or not to the observation data. 311 

We show all estimates as posterior modes and 95 % highest posterior credible 312 

intervals (CI). CIs that did not include zero were considered ‘significant’. All posterior 313 

coefficient estimates, frequencies of variable selections and summary statistics for covariates 314 

are provided in ESM 2. 315 

 316 

Results 317 

Breeding probability 318 



14 
 

The breeding probability of rabbits was highly seasonal, with low probabilities in January – 319 

April (summer breeding season, a period when rabbits reproduce infrequently), increasing in 320 

May-June (early breeding season), peaking in July – October (main breeding season), before 321 

declining in November – December (late breeding season) (Fig. 2). The distribution of 322 

breeding probabilities within years (and seasons) differed markedly across years as did the 323 

overall yearly breeding probabilities (Fig. 2). In many years, the annual polynomial fit of 324 

breeding probability matched field observations. For example breeding activity was delayed 325 

and reduced in very dry years (e.g. 1972, 1982) and increased over prolonged breeding 326 

seasons in wet years (e.g.1973, 1974) (Fig. 2). 327 

 We found support for a strong effect of rainfall on breeding probability, but only 328 

during the summer breeding season, where breeding probability was 22 % higher for each 329 

additional mm of rainfall (odds ratio of 1.2, CI: 1.1 – 1.4, i.e. from 0.17 to 0.21 breeding 330 

probability in summer). Note that 1-10 mm rain per week typically represents heavy summer 331 

rain, as most days are rainless (ESM 1, Fig. E.1.2). Distributed lag models showed that 332 

rainfall affects breeding probability in the summer breeding season immediately and up to 333 

time lags of 10 weeks (CI: 5-20) (Fig. 3) This indicates that in years with good rainfall, the 334 

onset of breeding activity is much earlier. We detected an effect of temperature on breeding 335 

probability in all seasons except the late breeding season, with decreases in breeding 336 

probability between 3.7 – 4.6 % (odds ratios 0.7 – 0.9 all CIs: 0.6 – 0.9 %) per C increase in 337 

temperature. Temperature effects were both immediate and with time lags of up to 10 weeks 338 

(CI: 0-15) in the early breeding season. The temporal distribution of time lagged effects for 339 

temperature in the other two seasons were inconclusive. 340 

Breeding probability was influenced by kidney fat scores in the summer breeding 341 

season, whereby breeding probability increased 146 % (odds ratio 3.9, CI: 2.5 – 6.1) for 342 

every unit of increase in kidney fat score (ordinal scores between 0 and 5). Individual body 343 
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mass index had a positive impact on breeding probability in the main and late breeding 344 

season, with an increase of breeding probability between 0.4 and 1.7 % (odds ratios 3.4 – 5.0 345 

all CIs: 1.9 – 9.0 %) per unit increase in body mass index (i.e. g above expected average body 346 

mass). This suggests that kidney fat scores can affect the start of the breeding season 347 

(whereby high scores promote an earlier onset of breeding), while body mass index affects 348 

breeding probability only towards the end of the annual breeding cycle (Fig. 4). 349 

Breeding probability decreased significantly during the main breeding season if 350 

breeding probability was high in the preceding (early breeding) season (Appendix A2), 351 

suggesting that shifts towards earlier reproductive output can result in the exhaustion of 352 

breeding potential later in the annual cycle. Breeding probability increased with age (eye lens 353 

weight) of individuals. Furthermore, young individuals with lens weights between 150 and 354 

200 mg (corresponding to 130 to 230 days old individuals) were more likely to breed in the 355 

later part (July – Dec) of the annual breeding cycle (ESM 1, Fig. E.1.5). This suggests that 356 

rabbits born early in the year were likely to breed later during the year, leading to relatively 357 

more young rabbits breeding in the later part of the annual cycle. 358 

We found no evidence for any direct effects of population density, soil moisture or 359 

pasture growth indices on breeding probability (i.e. all CI indistinct from zero). Model fit was 360 

good with a Bayesian p-value of 0.42, suggesting that the covariates did a reasonably good 361 

job at describing variation in the data. When using single-step covariates instead of 362 

distributed lag models, the Bayesian p-values were 0.86 and 0.93 for immediate and 10-week 363 

lagged effects, respectively. This shows that the use of distributed lag models improved 364 

model fit to the observation data for breeding probability. 365 

 366 

Ovulation rate 367 
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The overall average ovulation rate was 6 corpora lutea (SD 1.7). Ovulation rate was almost 368 

constant across the breeding season in some years, but exhibited (a-seasonal) variation in 369 

others (ESM 1, Fig. E.1.3). We found an effect of rainfall on ovulation rate during the main 370 

breeding season, whereby ovulation rate increased by 0.01 corpora lutea above average (log-371 

normal coefficient 0.006 CI: 0.001 – 0.015) per 1 mm increase in rainfall. Our model showed 372 

greatest support for a rainfall effect with time lags of up to 14 (CI: 1 - 19) weeks. Ovulation 373 

rates were also influenced by body mass index. Body mass index had a positive effect on 374 

ovulation rate during the early to late breeding season with 0.12 – 0.19 increases in ovulation 375 

rate per unit change in body mass index (all CIs: 0.04 – 0.25). The model fit was reasonably 376 

good with a Bayesian p-value of 0.56. When using single-step covariates instead of 377 

distributed lag models, the Bayesian p-values were 0.55 and 0.56 for immediate and 10-week 378 

lagged effects. This means that the distributed lag model did not improve fit to the observed 379 

data for ovulation rates. 380 

 381 

Embryo survival rates 382 

The overall estimated embryo survival rate was around 72 % (CI: 71 – 74 %). Embryo 383 

survival rates exhibited variation in some years (see ESM 1, Fig. E.1.4). We show that  384 

kidney fat score had a positive impact on embryo survival only during the rare breeding 385 

season, with an increase of 109 % (odds ratio 2.9 CI: 1.8 – 5.8 %) in survival rate per unit 386 

increase in kidney fat score. Likewise, body mass index is likely to influence embryo survival 387 

rates, particularly during the summer breeding season, where survival increased by 0.7 % 388 

(odds ratio 3.9 CI: 2.1 – 8.8 %) per g above average body mass. However, overall model fit 389 

for embryo survival was poor with a Bayesian p-value of zero, meaning that the covariates 390 

had a low predictive power in explaining variation in embryo survival. 391 

 392 
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Discussion 393 

Rabbits can exhibit highly seasonal and circannual patterns in their reproduction, 394 

synchronising paternal investment with food availability (Gilbert et al. 1987). We show that 395 

the effects of environmental drivers and individual body condition on long-term changes in 396 

rabbit fecundity vary considerably across seasons. Variation in rabbit fecundity was more 397 

strongly correlated to variation in individual body condition than direct changes in 398 

environmental factors. Rabbit body condition varied considerably among individuals 399 

captured at the same time, leading to high levels of individual heterogeneity in reproductive 400 

output and in embryo survival. Shifts in reproductive outputs across consecutive seasons in 401 

response to individual trait variation and, to a lesser extent, environmental conditions, are 402 

therefore likely to mitigate future climate shifts from having a direct or indirect (through 403 

body condition) effect on annual fecundity. 404 

 405 

 The effects of individual body condition and environmental factors on rabbit 406 

fecundity found in our study provide not only crucial insights into how average fecundity 407 

rates may change over time, but also how the dynamics of reproductive output are likely to 408 

shift across season. We show that variations in the timing of reproductive output are driven 409 

by the yearly onset of rainfall, potentially being mediated through food availability (Myers 410 

1970). The lack of any direct effect of the pasture growth index on fecundity in our analysis 411 

could be due to at least two possible explanations: true pasture growth is poorly represented 412 

by our index, which unlike rainfall is not measured directly; or, total pasture growth is not 413 

representative of the local plant species consumed by rabbits. Rainfall and kidney fat score 414 

had a positive effect on breeding probability and embryo survival early in the year (January - 415 

April), suggesting that fat reserves promote reproductive success particularly when 416 
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conditions are marginal (i.e. at the onset of plant growth or at the end of the breeding season 417 

when food resource become scarce)(Mutze 2009). 418 

By using distributed lag models, we were able to show that rainfall affects breeding 419 

immediately and also with a time lag of up to ten weeks after the onset of rainfall in summer. 420 

There was, however, noticeable uncertainty in the coefficient estimates for the distributed lag 421 

models as shown by relatively large credible intervals (see Fig. 3). In very dry years, rabbits 422 

at our study site did not start breeding until mid-winter when evaporation is sufficiently low 423 

that even small amounts of rain may initiate some pasture growth (personal observation, 424 

B.C.). Such shifts in the onset of breeding may allow rabbits to minimise the effects of short-425 

term adverse environmental conditions. Mature females that lack sufficient food resources to 426 

reproduce early in the breeding season may still be able to increase individual body condition 427 

and thereby increase their chances of later successful reproduction (Albon et al. 1983). A 428 

similar observation was made in Europe, where breeding by female rabbits is delayed after 429 

harsh winter conditions (Rödel et al. 2005).  430 

The effects of both body mass index and kidney fat on embryo survival appeared to 431 

be strongest in the summer breeding season, whereas the effect of body mass index on 432 

breeding probability was not as apparent in summer (but the relevant credible intervals 433 

exhibited some overlap, see Fig. 4). We also show that rabbits shift reproductive output 434 

across consecutive seasons in response to the yearly onset of rain. Typically, only relatively 435 

heavy summer rains promote the onset of rabbit breeding, probably through initiating plant 436 

growth. Breeding probability in the main breeding season (e.g. July - October) decreased with 437 

higher breeding probability in the preceding season (May-June) of the same year. At the same 438 

time, an increase in breeding probability with better body conditions (larger body mass 439 

indices) in both the main and late breeding season (July - December) indicates that late 440 
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breeders are mostly those in good body condition. Therefore body condition is likely to 441 

influence the number of litters raised per year.  442 

Individuals in better body condition had higher ovulation rates throughout the primary 443 

breeding season (May- December), but not earlier in the year, when conditions are 444 

suboptimal for breeding. This suggests that individuals only invest in reproduction under 445 

reasonably good conditions. Shifts towards earlier breeding within a yearly cycle can lead to 446 

relatively less reproductive output later in the yearly cycle for iteroparous rabbits. This is 447 

likely to be brought about through ‘physiological exhaustion’ of individuals, who become 448 

incapable of breeding additional times within a yearly cycle (Myers and Poole 1963). The net 449 

effect of ‘physiological exhaustion’ on annual offspring production is that an earlier onset of 450 

the breeding seasons does not necessarily increase overall yearly breeding capacity unless 451 

resource supply persists for a sufficiently long period of time to promote the repeated 452 

breeding of individuals within the same year. Nevertheless, early breeding within a 453 

circannual cycle may still favour population growth because early-born rabbits generally 454 

have higher survival probabilities than those born shortly before the onset of summer (Mutze 455 

et al. 2002). For females of other relatively short-lived species, survival may reflect, to some 456 

extent, a cost of reproduction (Hamel et al. 2010). 457 

We found only minor to moderate decreases of breeding probability with increases in 458 

temperature during most of the year. Breeding probability decreased only 3 – 5 % per 1 C 459 

increase in temperature. This small temperature driven effect is unlikely to influence long-460 

term population growth because reproductive output is generally high and with an average 461 

ovulation rate of six corpora lutea (see results), many more infants are born than can be 462 

recruited into the populations. Strong density-dependent compensation in rabbits through 463 

survival (Fordham et al. 2012b) means that minor declines in reproductive output should not 464 

alter population-level growth rates (Kokko and Lindström 1998). 465 
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The climate in semiarid Australia is predicted to experience increasing temperatures 466 

and declining rainfall in late autumn and early winter (CSIRO and Bureau of Meterology 467 

2014). This is likely to cause increased physiological stress for rabbits (Fordham et al. 468 

2012a). However, given that shifting reproductive output over time can to some extent 469 

compensate for adverse environmental conditions, and because overall temperature effects 470 

are not very strong, we conclude that significant reduction in reproductive output of rabbits 471 

under more extreme future climate conditions are unlikely or at least difficult to predict. In 472 

any case, our results support previous suggestions that environmentally-forced large-scale 473 

population changes are unlikely to be driven by fecundity alone, particularly for mammals 474 

with high reproductive potential (Jonzén et al. 2010; Korpimäki et al. 2004). Accordingly, 475 

studies of rabbits at another study site (Turretfield Research Station, ca. 200 km south, 476 

Mediterranean climate) show that survival rates of rabbits are controlled by weather 477 

conditions and rabbit haemorrhagic disease (which was not present in Australia during the 478 

time of our field work)(Fordham et al. 2012b; Mutze et al. 2014). Here, disease effects are 479 

tightly linked to the seasonal matching of host and pathogen dynamics (Wells et al. 2015).  480 

We were unable to identify and model the underpinning natural processes that cause 481 

individual heterogeneity, inter-annual variability or seasonal variability in body condition. 482 

This is pertinent given that body condition is the most important driver of rabbit fecundity. 483 

Better body condition is commonly linked to food availability in rabbits (Mutze 2009), 484 

however, individual heterogeneity in rabbit body condition was not influenced by population-485 

level processes such as density dependence, for which we would have expected a strong 486 

effect if increases in population density would equally induce stress for all individuals of a 487 

population such as food shortage. This is because high population densities would be 488 

expected to induce stress at the individual-level through food shortages. Other potential 489 

drivers of individual heterogeneity in body condition include social structure, where 490 
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dominant females have better access to food and shelter (von Holst et al. 2002), and parasites 491 

(Newey and Thirgood 2004). Since rabbits are iteropoarous and exhibit overlapping breeding 492 

generations, cohort-specific dynamics and responses to environmental conditions offer 493 

another explanation for the large individual heterogeneity underpinning reproductive output 494 

(Coulson et al. 2001; Lindström and Kokko 2002).  495 

 Our dynamic statistical approach reveals the role of seasonal and long-term 496 

environmental processes on animal demography and abundance over time. A robust 497 

understanding of these processes is needed to identify long-term (inter-annual) changes in 498 

response to environmental fluctuations beyond seasonal patterns (Benton et al. 2006; Etterson 499 

et al. 2011; Wells et al. 2013). We show that modelling ecological data with strong seasonal 500 

components can require accounting for dynamic changes in species behaviour and the history 501 

of the exposure process to environmental conditions. The majority of ecological studies to 502 

date have considered only single measures or moving averages as environmental covariates in 503 

linear models (Bolker et al. 2009). However, choosing the spatiotemporal scale over which to 504 

summarize environmental covariates is often a challenging task.  505 

 In our study, we applied distributed lag models (Welty et al. 2009) in an 506 

ecologically-based context to determine the time scale at which environmental covariates are 507 

most influential on outcome variables. Distributed lag models not only provide insights into 508 

the overall strength of environmental drivers (i.e. the effect size of coefficient estimates) but 509 

also insights into the timespan of the exposure process, requiring functional constraints for 510 

dealing with the high correlation of climate and other environmental variables from 511 

consecutive time steps. In our study, the credible intervals for the possible time lags were 512 

fairly wide. Although we could have improved this by constraining priors in the model 513 

specification, we preferred not to do this for two reasons: 1) in the absence of relevant prior 514 

knowledge, more strict constraints would limit posterior distributions, and 2) by including a 515 
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random estimate of the first time lag after which weights (i.e. the relative effect sizes of each 516 

measure of time lagged covariate) effectively decrease, we use a more flexible and general 517 

distributed lag model (at the cost of large posterior ranges given the uncertainty in estimates 518 

from the data). Welty et al. (2009), for example, did use a more constrained model by 519 

assuming that the strongest effect across the lagged time steps occurs always as an immediate 520 

effect, but this is unlikely to be appropriate for our system. Therefore, we recommend that 521 

future research on the use of distributed lag models in ecology should test various forms of 522 

such models that trade-off constraints and number of parameters versus flexibility in 523 

estimating the shape of exposure-response relationships.  524 

In summary, we show that seasonal dynamics and plasticity in reproduction are 525 

crucial components for understanding long-term changes in fecundity in response to past and 526 

future environmental conditions. Examining plasticity and time-scales of demographic 527 

exposure-response relationships in reproduction under seasonal conditions for a large range 528 

of species is likely to provide important insights into how species with different life histories 529 

are capable of dealing with global change. 530 

 531 
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Table 1. Primary climatic and individual-level drivers of rabbit fecundity (breeding 

probability, ovulation rate, embryo survival) according to season. Positive effects are 

indicated with “(+)” and negative effects with “(-)”. Different colours show a gradient from 

low to high (yellow to red) in the magnitude of seasonal change for breeding probability, 

ovulation rate, embryo survival based on model results. See Methods and Results for further 

details. 

 Jan-Apr  

(summer) 

May-Jun 

(early) 

July-Oct 

(main) 

Nov-Dec 

(late) 
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probability 

Rainfall 

(+) 

   

Temperature 

(-) 

Temperature 

(-) 

Temperature 
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Kidney fat score 

(+) 

 Body mass index 

(+) 

Body mass index 
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  Preceding 
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(+) 

Age 

(+) 

Age 
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Ovulation 
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 Body mass index 

(+) 

Body mass index 

(+) 

Body mass index 
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Body mass index 
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Fig. 1. Illustration showing possible seasonal and inter-annual differences in rabbit fecundity. 

The black line illustrates a three yearly cycle of breeding probabilities (i.e., probability 

density function for individuals breeding). In semi-arid Australia, breeding typically starts 

with the onset of pasture growth in autumn (early “E” breeding season) and peaks in the main 

breeding season (“M”) in winter. Boxes are drawn to represent consecutive seasons, whereby 

orange hatching shows “E” and red hatching shows “M”. The height of the boxes represents 

the range of breeding probabilities within these time periods. Grey arrows illustrate potential 

autoregression effects (i.e. the possible effect of preceding breeding probabilities on those in 

the current time steps). Red dots represent seasonally averaged fecundity rates for each year. 

The second peak in potential breeding probability occurs relatively late in the yearly cycle, 

causing lower fecundity rates in the early season, whereby fecundity rates in the main seasons 

M-1 to M-3 are similar (red dashed lines). 

 

 

Fig. 2. Seasonal patterns of breeding probability for rabbits over 25 years (1968 to 1992). 

Black lines show the posterior mode estimates from a 4
th

 order polynomial model, applied on 

an annual time step (fitted without environmental or individual-level covariates). Grey lines 

show underlying uncertainty in the estimates, plotted as 1,000 posterior samples. 

 

 

Fig. 3. The effects of weekly averaged rainfall on rabbit breeding probability in the summer 

(rare) breeding season and temperature in the early breeding season. Left panels show the 

posterior coefficient estimates for each weekly time lag (0 – 19 weeks), vertical black bars 

represent 95 % credible intervals. Red lines show the posterior mode of the parameter , 
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which describes the maximum time lag for which all previous lags are equally weighted in 

the distributed lag model (see Methods). The posterior frequency distribution of  is shown in 

the right panel. 

 

 

Fig. 4. Effect of kidney fat and body mass score on breeding probability, ovulation rate and 

embryo survival in different seasons (summer breeding season Jan - Apr, early breeding 

May-June, main breeding July - Oct, and late breeding season Nov - Dec). Effect sizes are 

given as posterior modes (black squares) and 95 % credible intervals (black lines) from 

scaled covariates. Numbers to the right of the coefficient estimates denote importance 

weights for parameters based on a Gibbs variable selection procedure (see Methods). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 


