165 research outputs found

    Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start

    Get PDF
    The bulged insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (monomer P) in two complementary 8mer DNA strands (intercalating nucleic acids) opposite to each other resulted in the formation of an easily denaturing duplex, which had lower thermal stability (21.0°C) than the wild-type double-stranded DNA (dsDNA, 26.0°C), but both modified oligodeoxynucleotides had increased binding affinity toward complementary single-stranded DNA (ssDNA) (41.5 and 39.0°C). Zipping of pyrene moieties in an easily denaturing duplex gave formation of a strong excimer band at 480 nm upon excitation at 343 nm in the steady-state fluorescence spectra. The excimer band disappeared upon addition of a similar short dsDNA, but remained when adding a 128mer dsDNA containing the same sequence. When P was inserted into 2′-OMe-RNA strands, the duplex with zipping P was found to be more stable (42.0°C) than duplexes with the complementary ssDNAs (31.5 and 19.5°C). The excimer band observed in the ds2′-OMe-RNA with zipping P had marginal changes upon addition of both 8 and 128mer dsDNA. Synthesized oligonucleotides were tested in a transcriptional inhibition assay for targeting of the open complex formed by Escherichia coli RNA polymerase with the lac UV-5 promoter using the above mentioned 128mer dsDNA. Inhibition of transcription was observed for 8mer DNAs possessing pyrene intercalators and designed to target both template and non-template DNA strands within the open complex. The observed inhibition was partly a result of unspecific binding of the modified DNAs to the RNA polymerase. Furthermore, the addition of 8mer DNA with three bulged insertions of P designed to be complementary to the template strand at the +36 to +43 position downstream of the transcription start resulted in a specific halt of transcription producing a truncated RNA transcript. This is to our knowledge the first report of an RNA elongation stop mediated by a small DNA sequence possessing intercalators. The insertions of P opposite to each other in ds2′-OMe-RNA showed inhibition efficiency of 96% compared with 25% for unmodified ds2′-OMe-RNA

    Optimal design of parallel triplex forming oligonucleotides containing Twisted Intercalating Nucleic Acids—TINA

    Get PDF
    Twisted intercalating nucleic acid (TINA) is a novel intercalator and stabilizer of Hoogsteen type parallel triplex formations (PT). Specific design rules for position of TINA in triplex forming oligonucleotides (TFOs) have not previously been presented. We describe a complete collection of easy and robust design rules based upon more than 2500 melting points (Tm) determined by FRET. To increase the sensitivity of PT, multiple TINAs should be placed with at least 3 nt in-between or preferable one TINA for each half helixturn and/or whole helixturn. We find that ΔTm of base mismatches on PT is remarkably high (between 7.4 and 15.2°C) compared to antiparallel duplexes (between 3.8 and 9.4°C). The specificity of PT by ΔTm increases when shorter TFOs and higher pH are chosen. To increase ΔTms, base mismatches should be placed in the center of the TFO and when feasible, A, C or T to G base mismatches should be avoided. Base mismatches can be neutralized by intercalation of a TINA on each side of the base mismatch and masked by a TINA intercalating direct 3′ (preferable) or 5′ of it. We predict that TINA stabilized PT will improve the sensitivity and specificity of DNA based clinical diagnostic assays

    Significantly Enhanced DNA Thermal Stability Resulting from Porphyrin H-Aggregate Formation in the Minor Grove of the Duplex

    Get PDF
    (Figure Presented) Too groovy: The covalent attachment of up to four porphyrins to complementary strands led to the formation of DNA porphyrin zippers with significantly increased DNA duplex stability. This is a result of H-aggregate formation in the minor groove. To the best of our knowledge this is the first report showing such a significant thermal duplex stabilization

    Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids – TINA

    Get PDF
    The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators. Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para-TINA molecules increased the melting point (Tm) of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5′ and 3′ termini (preferable) or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved analytical sensitivity in a DNA hybridization capture assay targeting the Escherichia coli rrs gene. The corresponding sequence from the Pseudomonas aeruginosa rrs gene was used as cross-reactivity control. At 150 mM ionic strength, analytical sensitivity was improved 27-fold by addition of ortho-TINA molecules and 7-fold by addition of para-TINA molecules (versus the unmodified DNA oligonucleotide), with a 4-fold increase retained at 1 M ionic strength. Both intercalators sustained the discrimination of mismatches in the dsDNA (indicated by ΔTm), unless placed directly adjacent to the mismatch – in which case they partly concealed ΔTm (most pronounced for para-TINA molecules). We anticipate that the presented rules for placement of TINA molecules will be broadly applicable in hybridization capture assays and target amplification systems

    Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation

    Get PDF
    Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA–TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA–TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA–TFOs were found to abrogate the formation of a DNA–protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA–TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome

    Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids

    Get PDF
    Two G-quadruplex forming sequences, 5′-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming oligonucleotides (QFOs) and the effect of LNA monomers in the context of biologically active QFOs. In addition, recent literature reports and our own studies on the gel retardation of the phosphodiester analogue of T30177 led to the conclusion that this sequence forms a parallel, dimeric G-quadruplex. Introduction of the 5′-phosphate inhibits dimerisation of this G-quadruplex as a result of negative charge–charge repulsion. Contrary to that, we found that attachment of the 5′-O-DMT-group produced a more active 17-mer sequence that showed signs of aggregation—forming multimeric G-quadruplex species in solution. Many of the antiviral QFOs in the present study formed more thermally stable G-quadruplexes and also high-order G-quadruplex structures which might be responsible for the increased antiviral activity observed

    Exploring human adenosine A₃ receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety

    Get PDF
    In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3′- and 5′-positions of the ribofuranosyl moiety and the 2- and N(6)-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3–12 and 24–33, with good hA(3)AR selectivity and moderate-to-high affinities (as in 32, K(i) = 27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3′-position

    Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method

    Get PDF
    A novel biosensing approach for the label-free detection of nucleic acid sequences of short and large lengths has been implemented, with special emphasis on targeting RNA sequences with secondary structures. The approach is based on selecting 8-aminoadenine-modified parallel-stranded DNA tail-clamps as affinity bioreceptors. These receptors have the ability of creating a stable triplex-stranded helix at neutral pH upon hybridization with the nucleic acid target. A surface plasmon resonance biosensor has been used for the detection. With this strategy, we have detected short DNA sequences (32-mer) and purified RNA (103-mer) at the femtomol level in a few minutes in an easy and level-free way. This approach is particularly suitable for the detection of RNA molecules with predicted secondary structures, reaching a limit of detection of 50 fmol without any label or amplification steps. Our methodology has shown a marked enhancement for the detection (18% for short DNA and 54% for RNA), when compared with the conventional duplex approach, highlighting the large difficulty of the duplex approach to detect nucleic acid sequences, especially those exhibiting stable secondary structures. We believe that our strategy could be of great interest to the RNA field
    corecore