62 research outputs found

    Effect of Random Ethylene Comonomer on Relaxation of Flow-Induced Precursors in Isotactic Polypropylene

    Get PDF
    The effect of comonomer on structure and relaxation of flow-induced precursors was investigated in a series of isotactic polypropylene and random propylene−ethylene copolymers. The polymers were subjected to flow by fiber pulling and allowed to relax above their nominal melting temperature for specific times. The type of morphology developed after cooling revealed whether flow-induced precursors were still present or the melt had fully reequilibrated. Precursors were long-lived and, at fixed temperature, decayed significantly faster with higher ethylene content. The critical time for precursor relaxation followed an Arrhenius-type dependence with temperature. The apparent energy of activation for precursor dissolution decreased with increasing comonomer content, indicating that the rate-limiting step of the relaxation process becomes less difficult with higher ethylene fraction. This effect is attributed to ethylene co-units acting as disruptors of precursor structure and is discussed in terms of quasi-crystalline nature and characteristic chain stem length of precursor bundles. Includes supplemental materials

    Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures

    Get PDF
    Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack of γ-crystals obtained at 142 °C is opposite to the behavior reported for quiescent crystallization under pressure, for which increasing temperature results in more and even pure γ-crystals. In the current study, the absence of γ-phase at 142 °C is tentatively associated with lack of epitaxial nucleation on α-lamellae and to relatively low growth rate of γ-crystals

    Real-time depth sectioning: Isolating the effect of stress on structure development in pressure-driven flow

    Get PDF
    Transient structure development at a specific distance from the channel wall in a pressure-driven flow is obtained from a set of real-time measurements that integrate contributions throughout the thickness of a rectangular channel. This “depth sectioning method” retains the advantages of pressure-driven flow while revealing flow-induced structures as a function of stress. The method is illustrated by applying it to isothermal shear-induced crystallization of an isotactic polypropylene using both synchrotron x-ray scattering and optical retardance. Real-time, depth-resolved information about the development of oriented precursors reveals features that cannot be extracted from ex-situ observation of the final morphology and that are obscured in the depth-averaged in-situ measurements. For example, at 137 °C and at the highest shear stress examined (65 kPa), oriented thread-like nuclei formed rapidly, saturated within the first 7 s of flow, developed significant crystalline overgrowth during flow and did not relax after cessation of shear. At lower stresses, threads formed later and increased at a slower rate. The depth sectioning method can be applied to the flow-induced structure development in diverse complex fluids, including block copolymers, colloidal systems, and liquid-crystalline polymers

    Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si

    Get PDF
    The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix

    Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si

    Get PDF
    The size and lattice constant evolution of Pb nanoparticles (NPs) synthesized by high fluence implantation in crystalline Si have been studied with a variety of experimental techniques. Results obtained from small-angle x-ray scattering showed that the Pb NPs grow with increasing implantation fluence and annealing duration. The theory of NP growth kinetics can be applied to qualitatively explain the size evolution of the Pb NPs during the implantation and annealing processes. Moreover, the lattice constant of the Pb NPs was evaluated by conventional x-ray diffraction. The lattice dilatation was observed to decrease with increasing size of the Pb NPs. Such lattice constant tuning can be attributed to the pseudomorphism caused by the lattice mismatch between the Pb NPs and the Si matrix

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Concomitant Crystallization in Propylene/Ethylene Random Copolymer with Strong Flow at Elevated Temperatures

    Get PDF
    Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack of γ-crystals obtained at 142 °C is opposite to the behavior reported for quiescent crystallization under pressure, for which increasing temperature results in more and even pure γ-crystals. In the current study, the absence of γ-phase at 142 °C is tentatively associated with lack of epitaxial nucleation on α-lamellae and to relatively low growth rate of γ-crystals
    corecore